

TECHNO-ECONOMIC ANALYSIS OF ORC IN GAS COMPRESSION STATIONS TAKING INTO ACCOUNT ACTUAL OPERATING CONDITIONS

M. Bianchi, L. Branchini, A. De Pascale, F. Melino, V. Orlandini, A. Peretto Università di Bologna – DIN, Bologna, ITALY

> **D.** Archetti, F. Campana, T. Ferrari, N. Rossetti Turboden S.p.A, Brescia, ITALY

> > ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

- *** BACKGROUND & INTRODUCTION**
- ✤ OBJECTIVES
- **GTs-ORC CONFIGURATIONS: DIRECT EVA, WITH IHTF**
- ***** ASSUMPTIONS & BOUNDARY CONDITIONS FOR ORC DESIGN
- TECHNO-ECONOMIC PERFORMANCE RESULTS BASED ON YEARLY GTs 1 min. DATA OPERATION
- * CONCLUSIONS

BACKGROUND & INTRODUCTION:

NG network potential

- CSs represent a fundamental element of NG transport system: cost of compression can reach 50 % of total transmission cost [Mercado et al. – Applied Energy, 2015];
- in the decade (1996-2006), **+ 26** % in **CSs installed power, + 19** % in throughput **capacity** to reduce environmental footprint and accommodate higher volume of NG [*EIA-report*];
- Huge energy recovery potential in the NG transmission sector: 1300 MWe recoverable with ORC applied to NG CSs (European market), energy generation up to 10.43 TWh/year, 3.7 million tons avoided GHG emissions and 934 million \$/year of avoided energy costs [*Campana et al. - Energy Conversion and Management, 2013*]

BACKGROUND & INTRODUCTION

basic components of a NG CS facility

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

BACKGROUND & INTRODUCTION: characteristics of GTs in O&G sector

GTs WIDELY USED IN O&G SECTOR FOR POWER GENERATION & MECHANICAL DRIVE APPLICATIONS: Why differentiate O&G Gas turbines from other applications?

OIL & GAS REQUIREMENTS:

- AVAILABILITY/RELIABILITY : <u>redundant capacity installed to</u> <u>ensure the necessary reserve power</u>
- RUGGEDNESS
- HIGH POWER/WEIGHT RATIO
- EFFICIENCY NOT VERY CRITICAL: <u>significant portion of primary</u> <u>energy discharged into atmosphere</u>

INDUSTRIAL POWER GENERATION REQUIREMENTS:

- COST OF ELECTRICITY
- EFFICIENCY
- COST OF O&M

BACKGROUND & INTRODUCTION:

Operative ORC in NG CS

Pipeline Name*	Location	GT model	GT/ORC Size [MW]												
TransCanada	Gold Creek, Alberta		28.3 / 6.5												
Norther	St. Anthony, North Dakota														
	Wetonka, South Dakota		28.3 / 5.5												
	Clark, South Dakota	R													_
	Estelline, South Dakota	olls RI		Ξ				•	RRF	RB211		•	GE PG	T25	
	Manning, North Dakota	Ro 321			0.40				GEL	M250			Solar M	/lars 100	
Border	Zeeland, North Dakota	усе 1				<u></u>		000			-				
	CS6, North Dakota					E			GEF	G120			Solar C	entaur 4	0
	Culbertson, Montana				0.35	-			GE F	PGT25+					
	Garvin, Minnesota					-									
	CS 13, Minnesota				0.30	-									-
Alliance	Kerrobert, Saskatchewan	L		ີ້		- 🔺	*		_						-
	Loreburn, Saskatchewan	GE M2:	24.6 / 5.5	Ā	0.25	E									_
	Estlin, Saskatchewan	500		<u>`</u>	ي ا	-						•			-
Spectra	Alameda, Saskatchewan			OR	<u>ё 020</u>			••				-			
	Mile House, British Columbia	20 20	17.9/5.0	Δ.		-						•			-
	Savona, British Columbia	E T T	17.57 5.0		0.15										
Alliance	Irma, Alberta	G PC 2:	31.3 / 5.5			E									-
Spectra	Australian, British Columbia		31.3 / 5.0		0.10	E		Lini							
~	Summit Lake, British Columbia	C P			() 5	1	0	15	20	25	30)	35	4(
Spectra	Hixon, British Columbia	HE 15	23.1 / 5.0					(CS siz	ze, ΣP	_{бт} [М'	W]			
Trailblazer	Peetz,		14.9 / 4.0												
	Colorado	X .													
Kern River	Goodspring, Nevada	Sol	33.6 / 6.0		* - • •						<u> </u>	(0.0.0)			
Alliance	Windfall,	ar 10	- / 14		*E. M	асспі, М	. Astolj	n, Org	janic F	Rankine	Cycle	(ORC)	Powe	er	
	Alberta	0			Syster	ns- Tech	nologie	es and	Appli	cations,	Wood	lhead	publis	shing	
	Morinville, Alberta		- / 5.5		series	in Energ	y, Elsev	vier, 2	017, IS	SBN: 97	8-0-08	3-1005	51 <u>0</u> -1		
TransGas**	Saskatchaewan	Solaı Cent aur 40	3.4 / 1.0		** Tui	- boden d	lata								

OBJECTIVES

ANALYZE THE <u>ENERGETIC-ECONOMIC POTENTIAL OF ORC</u> AS BOTTOMER CYCLE OF A <u>50 MW NG COMPRESSION STATION</u>, UNDER <u>ACTUAL GTs OPERATION</u>.

- TWO DIFFERENT GTs-ORC CONFIGURATIONS (WITH/WITHOUT INTERMEDIATE FLUID) DESIGNED AND THERMODYNAMIC PERFORMANCE IDENTIFIED.
- TAKING INTO ACCOUNT GTs PART-LOAD BEHAVIOR DURING THE YEAR, ORC OFF-DESIGN OPERATION ARE ESTIMATED.
- ENERGETIC, ECONOMIC AND ENVIRONMENTAL ANALYSIS, YEARLY BASE, IS CARRIED OUT TO SHOW THE FEASIBILITY OF ORC.

GTs-ORC CONFIGURATIONS

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

GTs-ORC DESIGN ANALYSIS: preliminary investigations for optimum

Preliminary parametric investigation on ORC as bottomer on NG CS facilities to analyze:

- different organic fluids analyzed: Cyclopentane, Cyclohexane, refrigerant fluid R1233zd(E) etc.
- different condensation conditions analyzed: low, medium, high saturation temperature
- Influence of superheting degree values, according to fluids thermal stability limits, to identify max. ORC performance

Organic fluid property	Cyclopentane	R1233zd(E)		
Molar weight [kg/kmol]	70.13	130.50		
Critical Pressure [bar]	45.1	37.7		
Critical Temperature [°C]	238.6	165.6		
Normal Boiling point [°C]	49.3	18.3		
Thermal stability limit [°C]	300	250		
Flamability risk	Flammable	None		
GWP [-]	0	1		
ODP [-]	0	0.0003		

Saturation Temperature [°C]

GTs-ORC DESIGN ANALYSIS: preliminary investigations for optimum

Discussion:

- positive effect on P_{ORC} of low condensation temperature (max. values in LST case);
- depending on organic fluid, max. performance recorded for different SH degree values;
- Refrigerant shows a monotonic increase of power output values with SH degree while cyclopentane max.
 performance achieved for values close to 50 °C, considerably lower than thermal stability limit

GTs-ORC DESIGN ASSUMPTIONS

GTs-ORC DESIGN SPECIFICATIONS:

based on literature survey and Turboden experience on 10 MW ORC size

GT load [% of nameplate capacity]	80	HE pressure drop, IHTF/ gas side [bar]	1.5/0.015
Inlet/outlet duct pressure losses [mbar]	10	REG effectiveness [%]	85
Minimum GT stack temperature [°C]	150	REG pressure drop ORC liquid/vapour side [bar]	1/0.55
ORC working fluid	Cyclopentane	Subcooling ORC outlet condenser [°C]	5
IHTF assumed	Therminol 66	Condensation temperature [°C]	35
ORC expander isentropic efficiency [%]	0.85	Condenser pressure drop, organic fluid side [bar]	0.1
ORC evaporative pressure-critical pressure ratio [-]	0.76	Air draft losses [mbar]	2
ORC max. superheating degree [°C]	96.5	Heat exchangers thermal loss [%]	1
Boiler pressure drop, organic fluid/ IHTF/gas side [bar]	2/1/0.015	Electro/mechanical efficiency [%]	97
IHTF maximum temperature [°C]	315	Pumps mechanical efficiency [%]	80
IHTF loop max. pressure [bar]	15	Pumps/Fun nominal isentropic efficiency [%]	60
pressure drop in IHTF loop [bar]	2	Miscellaneous GT aux. load [% of GTs power]	0.7

- ✓ ORC bottomer cycle design with **GTs @ 80% of nameplate capacity**
- ✓ Cyclopentane and Therminol 66 assumed as organic and intermediate fluids
- ✓ Subcritical ORC cycle condition with superheating
- ✓ Air cooled condenser assumed
- ✓ Pressure and heat losses accounted

ORC DESIGN RESULTS

ORC Performance results @ design conditions	DHE CASE	IHTF CASE
Bottomer cycle thermal power input [kW]	46856	47294
ORC turbine inlet pressure [bar]	34	34
ORC turbine inlet temperature [°C]	280	250
Condenser pressure [bar]	0.61	0.61
ORC fluid mass flow rate [kg/s]	80	84
IHTF inlet/outlet temperatures [°C]	-	130/315
IHTF fluid mass flow rate [kg/s]	-	112
ORC gross electric power [kW]	12039	11433
ORC Specific power [kJ/kg]	155	140
Thermal power to condenser [kW]	34593	35436
Turbine expansion pressure ratio [-]	56	56
Turbine expansion volume ratio [-]	35	38
Organic fluid/IHTF pumps consumptions [kW]	728/-	739/185
Air cooled condenser fun consumptions [kW]	953	977
Net ORC electric power output [kW]	11311	10509
Net ORC electric efficiency [-]	0.241	0.222

GTs OPERATION IN A NG CS

✓ PART LOAD OPERATION FOR 7300 h/y

✓ UNITS OPERATED BETWEEN 80 – 60 % OF NAMEPLATE CAPACITY FOR 4000 h/y

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

ORC off-design operation estimated through power output & efficiency curves as function of GT load (DHE layout)

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

GTs-ORC YEARLY PERFORMANCE RESULTS

Yearly results of ORC operation	DHE	IHTF
Average net Power output during operative hours [kW]	9084	8475
Average net electric efficiency during operative hours [-]	0.238	0.220
Generated net electrical energy [GWh/year]	66.03	61.60
Equivalent operating hours [h]	5838	5862
NG Primary energy saved [GWh/year]	182	170
CO ₂ saved [tons/year]	36080	33661

Annual incomes represented by fuel savings (0,09 \$/Sm³) and avoided CO₂ taxes (56 \$/t)

Total Investment costs depending on layouts DHE 1500 \$/kW and IHTF 2000 \$/kW

CONCLUSIONS

- a detailed techno-economic feasibility study of two different ORC configurations, as energy recovery technologies to be implemented in a 50 MW NG CS, has been performed.
- performance of the ORC cycle have been evaluated, based on the NG CS real demand data, taking into account the bottomer off-design operation.
- obtained results show that the direct heat exchange layout enables the saving of more than 182 GWh of fuel per year, generating up to 66 GWh/year of additional net electrical energy. The total amount of CO₂ saved is up to 36*10³ tons/year.
- performed economic analysis, based on the NPV method, shows that the ORC investment costs can be recovered within 7 years of CS operation in case of DHE. Pay-back time is increased up to 11 years in case of IHTF.
- performed investigation confirmed the ORC as a techno-economic profitable industrial technology, capable to recover significant amount of wasted heat in NG compression facilities.

TECHNO-ECONOMIC ANALYSIS OF ORC IN GAS COMPRESSION STATIONS TAKING INTO ACCOUNT ACTUAL OPERATING CONDITIONS

M. Bianchi, L. Branchini, A. De Pascale, F. Melino, V. Orlandini, A. Peretto Università di Bologna – DIN, Bologna, ITALY

> **D.** Archetti, F. Campana, T. Ferrari, N. Rossetti Turboden S.p.A, Brescia, ITALY

> > ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI