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What	Is	FBK	and	ARES	

SOLUTION	PROVIDERS	with	
approach oriented to	

EXCELLENCE

More than 350 researchers; 220 students, PhD
and visiting professors; 8 hubs; 7 facilities; 30
spin-offs e start-ups; >100 scientific events per
year.

1 of the 8 FBK’s hub > 150 employees; 109
researchers; 41 students, PhD and visiting
professors; 6 research units (ARES one of these).

For	more	info:
www.fbk.eu	
cmm.fbk.eu	

Humanities	HubScientific and	Technological Hub ECT
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RESEARCH	PILLARS
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&	Storage
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Smart	Buildings	
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Systems

Technology	
innovation
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in	Industries

Energy	Research	In	ARES
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Overview	of	the	analysis

• Reversible Solid Oxide Fuel Cell and Solid Oxide
Electrolyzer (rSOFC/SOE) system coupled with
ORC à Exploiting waste heat coming from the
hydrogen conversion process.

• Simplified approach to implement the Steady
State (SS) behavior of the whole integrated
layout.

• A model built through experimental data is used
to improve the system layout with a feasible
waste heat recovery solution.

THE	GOAL	OF	THE	ANALYSIS

THE	APPROACH
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The	Experience	On	Hydrogen	Storage	From	Eden	Project*:
SOE	Configuration

𝐄𝐧𝐯𝐢𝐫𝐨𝐧𝐦𝐞𝐧𝐭

*The research leading to these results has received funding from the European union’s seventh
framework programme (FP7/2007-2013) for the fuel cells and hydrogen joint technology
initiative under grant agreement n°303472

• Integration of reversible SOE with a
magnesium-based hydrogen storage.

• Solid state storage requires to be cooled
down to absorb hydrogen.

• High temperature air flux (@ 800 ºC) from
the electrolyzer is used to heat up the
incoming air for the electrolysis. Then,
released to the environment.

• High temperature 𝐇𝟐 (@ 800 ºC) coming
from the electrolyzer used to heat up the
incomingwater flux for the electrolysis.

• Cooled 𝐇𝟐 is then absorbed by the
magnesium hydrides.

𝐻-

Air	out

Air	in
𝐻-𝑂 in
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The	Experience	On	Hydrogen	Storage	From	Eden	Project*:
SOFC	Configuration

• Integration of reversible SOFC with
magnesium-based hydrogen storage.

• Solid state storage requires heat to
desorb hydrogen.

• Waste heat and unconverted hydrogen
coming from the fuel cell outlet used to
warm up (@ 300 ºC) the hydrogen tank
for the desorption process.

• A catalytic burner converts the residual
hydrogen to preheat the fluxes of
hydrogen and air going to the cell.

• The exhaust gases are released to the
ambient with a considerable level of
enthalpy.

𝐄𝐧𝐯𝐢𝐫𝐨𝐧𝐦𝐞𝐧𝐭

*The research leading to these results has received funding from the European union’s seventh
framework programme (FP7/2007-2013) for the fuel cells and hydrogen joint technology
initiative under grant agreement n°303472

Air	out

Air	in
𝐻- in

𝐻- out
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ORC	integration	within	the	SOE	layout

BoP for a typical 50 kWel SOE/15 kWel SOFC reversible system with
possible WHR implementations.
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All	the	layout’s	auxiliaries	are	also	depicted	
(Source:	EDEN	EU	project,	h2eden.eu	website,	2015)	

• WHR exchanger at the air preheater
outlet has different advantages:

↑ No modifications of the system
layout.

↑ Exhaust stream composed by air.
NO necessity of high-cost
exchanger materials.

• Alternative position at the hydrogen
dryer, to recover the steam released to
the ambient:

↑ Latent heat available in this part of
the circuit.

↓ Flow rate too low for a proper
recover.
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ORC	integration	within	the	SOFC	layout

• For the SOFC configuration, the mass flow rate is higher than the SOE solution due to the compound of air
and water formed by the hydrogen lean catalytic combustion.
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BoP for a typical 50 kWel SOE/15 kWel SOFC reversible system with
possible WHR implementations. All	the	layout’s	auxiliaries	are	also	depicted	

(Source:	EDEN	EU	project,	h2eden.eu	website,	2015)	
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• Steady State Model based on a thermodynamic BoP written
using the commercial software Engineering Equation Solver
(EES).

• Waste flux thermodynamic data are provided as outputs by
the SOFC/SOE model.

• Input for the ORC design model. The heat exchangers total
areas are defined with a previously available discretized
model.

• Efficiency ( 𝜼𝑰 ), Net power ( �̇�𝑵𝑬𝑻,𝒆𝒍 ) and total heat
exchanger area (𝑨𝒆𝒗𝒂𝒑 - 𝑨𝒓𝒆𝒄 - 𝑨𝒄𝒐𝒏𝒅) are the model Key
Performance Indicators.

Steady	State	Model
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Optimization	For	The	SOE	WHR	Implementation

• CHART1: Power output VS Evaporation pressure.
• CHART2: Total heat exchanger area VS Evaporation pressure.
• Maximization of the net power and total heat exchangers

surface,
• Simulation avoids very low pinch point, which would

lead to very high heat exchanger surfaces, despite the
optimal performance.

• A compromise between the three variables (pressure, heat
exchangers area and power output) needs to be achieved.

• Possible recovery of the waste heat coming from the air-to-
air hot outlet, convertible in a net power up to 0.95 kWel.

CHART1

CHART2𝐴CDEFGHIJ
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Optimization	for	the	SOFC	WHR	implementation

• CHART1: Power output VS Evaporation pressure.
• CHART2: Total heat exchanger area VS Evaporation pressure.
• Consider the previous trade-off between maximum power

and total heat exchanger area
• Theoretical maximum net power of 1,3 kW with a pinch point

of 70K.
• Higher power available compare to the SOE model due to the

higher hot flow rate of mixed air and steam available in the
SOFC configuration.

CHART2

CHART1

𝐴CDEFGHIJ
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Conclusions
• SOE/ORC: possible recovery of the waste heat coming

from the air-to-air recuperator hot outlet.
• Convertible in a net power up to 0.95 kWel.
• Equal to a theoretical overall electric efficiency

improvement of 2%.

• SOFC/ORC: Net power available equal to 1.3 kW
considering the stream of combustion gases leaving the
preheater.

• Theoretical overall electric efficiency improvement of
almost 8%.

• Improvement of the overall efficiency for the SOE and
SOFC systems are theoretically feasible without
completely redesigning the system layout.
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Working	in	Progress

WHAT	WE	ARE	 GOING	TO	DO:
• Validate	the	analysis	with	a	detailed	dynamic	model.

• Dynamic	simulations	for	transient	regimes	while	switching	from	SOE	to	SOFC	and	vice-versa.	

• Economic	analysis	on	the	impact	of	the	WHR	system	on	the	overall	layout.

WHAT WE HAVE DONE:
• Feasibility study of a small ORC system to recover heat released by a rSOFC/SOE system with a solid state

hydrogen storage.

• Analysis performed in a steady state model with the target of improving power output and overall system
efficiency.

• Preliminary analysis has been carried out on both SOFC and SOE layouts.

• The model merges the model related to the hydrogen layout and the ORC part.

• Optimization process of the net power available from the ORC machine, keeps count of the technological
constraints of total heat exchanger surface.
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BoP SOFC/ORC
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Correlations
Plate heat exchangers are assumed to be used in the ORC.
The heat exchangers total areas are defined with a discretized model.

• Thonon’s equation [16] is used for the single-phase zones:

• Boiling heat transfer correlation is derived from [17]:

• Kuo correlation [18] is used to describe the condensation process:

[16] B.	Thonon,	“Recent	research	and	developments	in	plate	heat	exchangers,”	Fuel	and	Energy	Abstracts	36,	p.	361,	1995.
[17] Y.	Hsieh	and	T.	F.	Lin,	“Saturated	flow	boiling	heat	transfer	and	pressure	drop	of	refrigerant	R-410A	in	a	vertical	plate	heat	exchanger,”	International	Journal	of	Heat	and	Mass	Transfer	45,	pp.	1033-1044,	2002.
[18] W.	S.	Kuo,	Y.	M.	Lie,	Y.	Y.	Hsieh	and	T.	F.	Lin,	“Condensation	heat	transfer	and	pressure	drop	of	refrigerant	R-410A	flow	in	a	vertical	plate	heat	exchanger.,”	International	Journal	of	Heat	and	Mass	Transfer	48,	pp.	5205-5220,	2005.



Hypothesis

ORC	technical	parameters SOFC/SOE	technical	parameters

𝐓𝐚𝐦𝐛 = 𝟐𝟎℃ ∆PSTUV,WXY =	2	kPa

𝐓𝐜𝐨𝐧𝐝 = 𝟏𝟓℃ ∆PST^,WXY =	1,5	kPa

𝐏𝐜𝐨𝐧𝐝 = 𝟐	𝐛𝐚𝐫 ∆PSTUV,abcd =	1	kPa

𝛈𝐢𝐬,𝐞𝐱𝐩 = 𝟎, 𝟖𝟓 ∆PST^,abcd =	2	kPa

𝛈𝐞𝐥,𝐦𝐞𝐜,𝐞𝐱𝐩 = 𝟎, 𝟖𝟓 ∆PWXY,kYcl =	2	kPa (experimental	data)

𝛈𝐞𝐱𝐩,𝐯𝐨𝐥 = 𝟎, 𝟖𝟓

𝛈𝐢𝐬,𝐩𝐩 = 𝟎, 𝟖𝟓

𝛈𝐞𝐥,𝐦𝐞𝐜,𝐩𝐩 = 𝟎, 𝟗𝟎

𝐖𝐨𝐫𝐤𝐢𝐧𝐠	𝐅𝐥𝐮𝐢𝐝 = 𝐑𝟐𝟒𝟓𝐟𝐚

β	=	45º


