

REGASIFICATION PLANTS: CRYOGENIC ORC TO ENHANCE THE EFFICIENCY OF LNG TERMINALS

Anton Marco Fantolini LNG Technology Projects MGR Salvatore De Rinaldis Innovation Dpt. Luca Davide Inglese LNG Dpt.

POLITECNICO

MILANO 1863

Marco Astolfi Gianluca Valenti Ennio Macchi

Energy Dpt. Energy Dpt. Energy Dpt.

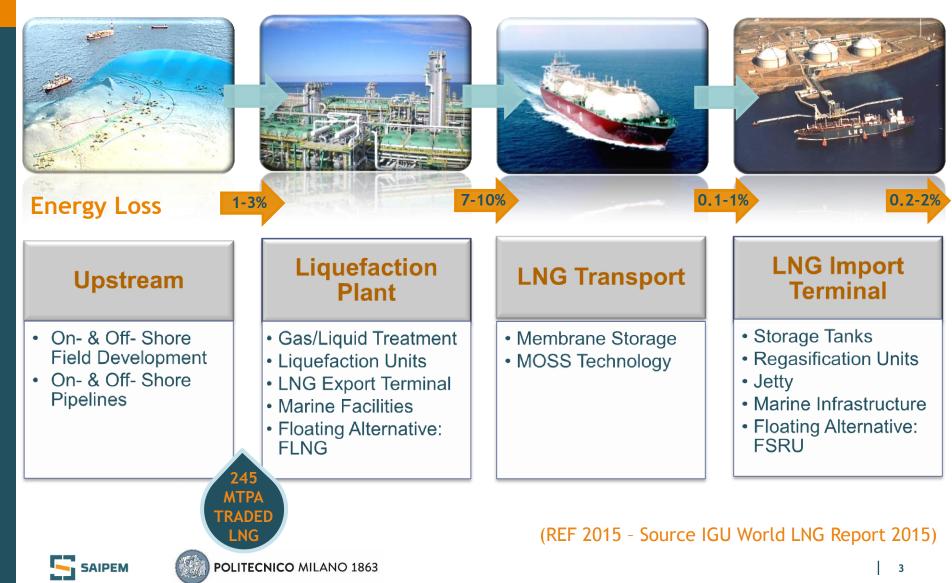
ORC2017 Politecnico di Milano, 13-15 September 2017

SUMMARY

□ INTRODUCTION

□ LNG REGASSIFICATION ENERGY REQUIREMENTS

□ TECHNOLOGY OVERVIEW


CRYOGENIC ORGANIC RANKINE CYCLES

□ ENERGY EFFICIENT LNG REGASIFICATION TECHNOLOGIES

INTRODUCTION LNG Value Chain

INTRODUCTION LNG Regasification

IGU World LNG Report 2016

- Global Regasification capacity: 757 MTPA
- Increase from 2014: 33 MTPA, +5%
- Floating Regasification: 77 MTPA, +35% yoy
- LNG Regasification is an excellent chance to diversify energy sources
- Global Regasification market continues to expand at a steady pace
- LNG supply is steadly increasing

SAIPEM REFERENCES Designed and built: 12 LNG terminals 1 FSRU 40 LNG tanks

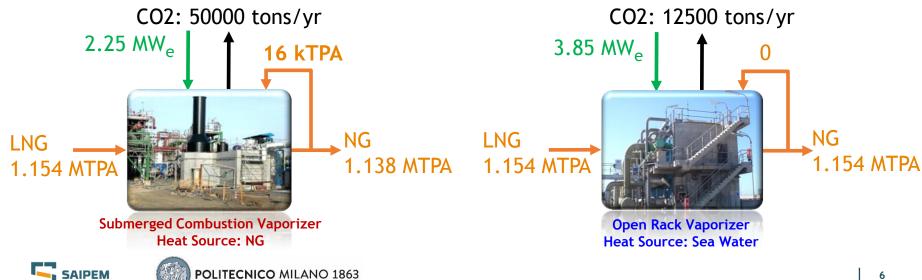
POLITECNICO MILANO 1863

INTRODUCTION Recover Energy - Reduce Emissions

Import Terminals pay considerable expenses for electrical power import

- Low usage, recurring seasonally, increases power cost weight on income
- Possible Carbon Tax would further increase the costs for power consumption

Saipem in cooperation with Politecnico di Milano has:


- studied possible schemes for meeting the electrical load of only a single regasification line while reducing (or eliminating) the primary energy use
- investigated the market for equipment technical feasibility and economics

LNG REGASSIFICATION ENERGY REQUIREMENTS **Thermal and Electric Power**

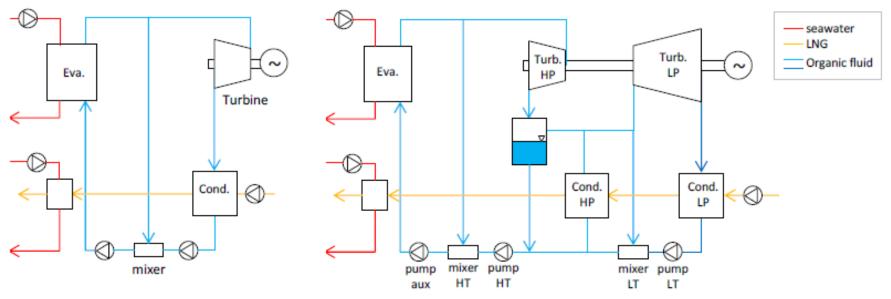
TECHNOLOGY OVERVIEW Energy Recovery Performances Performance indexes Target Specific Fuel Consumption (SCF) = $\frac{Equivalent NG \ consumption}{regasified \ LNG} [kg_{NG}/tons_{LNG}]$ $\rightarrow 0$ Fuel Consumption Saving (FCS) = $\frac{Consumption - SCV \text{ or } ORV \text{ consumption}}{SCV \text{ or } ORV \text{ consumption}} [\%]$ \rightarrow -100

Reference Conversion Factor (Thermal to Electric) = **50**%

TECHNOLOGY OVERVIEW Energy Efficient Technologies

Direct expansion, pumping the cryogenic LNG to high pressures and expanding the regasified LNG to delivery pressures

Cogeneration, producing simultaneously electric and thermal power from burning a fraction of the regasified LNG


Gas Cycle, producing electric power from a fraction of the regasified LNG rejecting heat (thermal power) to regasify LNG

Organic Rankine Cycle (ORC), producing electric power using seawater as an energy source and rejecting heat to regasify LNG

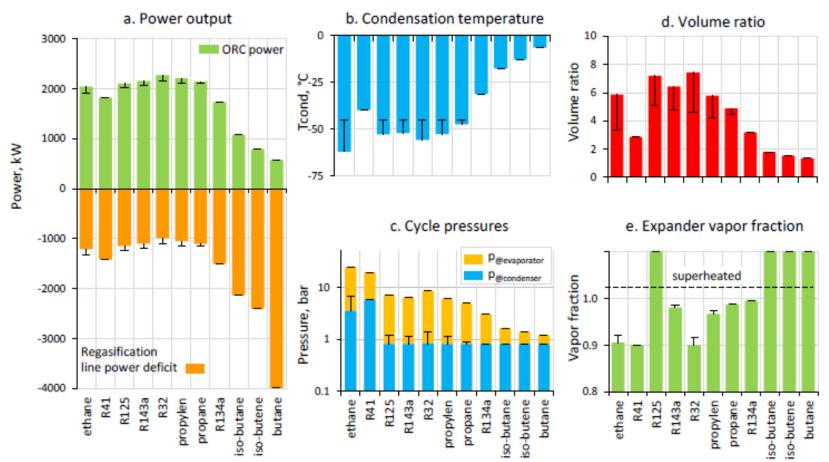
CRYOGENIC ORGANIC RANKINE CYCLES ORC: Plant configurations

- Plant schemes, employing direct contact heat exchanger prior to evaporation:
 - single condensation level cycle (left)
 - double condensation level cycle (right)
- Single condensation level cycle is the simplest, but allows for a considerably lower power production than the other solution, yielding a lower reduction of the SFC
- Double condensation level cycle operates with a pure fluid and allows the achievement of a higher efficiency, mainly thanks to a lower irreversibility in the heat exchange occurring in the LNG regasification process

POLITECNICO MILANO 1863

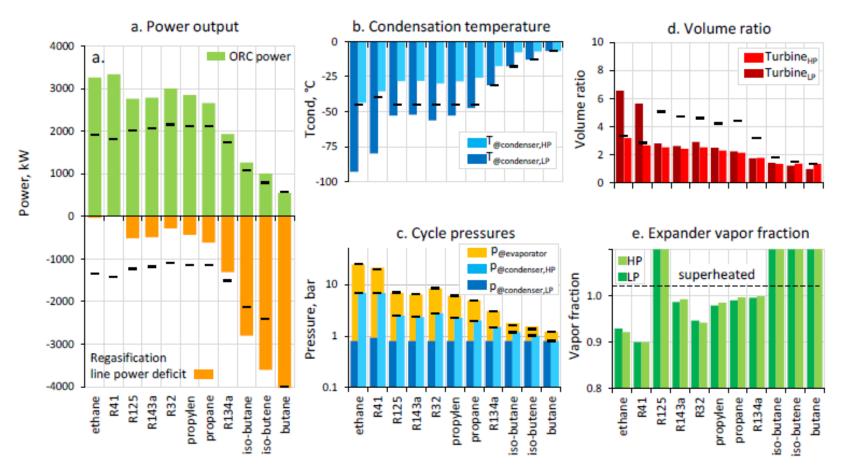
CRYOGENIC ORGANIC RANKINE CYCLES ORC: Organic working fluid selection

Fluid	Formula	Tcrit	GWP	NFPA codes		
				Н	F	Ι
Ethane	CH ₃ -CH ₃	32.2	<10	1	4	
R41	CH ₃ F	44.1	150	1	4	0
R125	CF ₃ -CHF ₂	66	3500	1	0	0
R143a	CF ₃ -CH ₃	72.7	4470	1	4	0
R32	CH_2F_2	78.1	675	1	4	0
Propylene	CH ₂ =CH-CH ₃	91.1	<10	1	4	0
Propane	CH ₃ -CH ₂ -CH ₃	96.7	<10	1	4	0
R134a	CF ₃ -CH ₂ F	101.1	1430	1	0	1
Iso-butane	(CH ₃) ₂ -CH-CH ₃	134.7	<10	1	4	0
Iso-butene	CH2=C-CH3	145	<10	1	4	0
Butane	CH ₃ -(CH ₂) ₂ -CH ₃	152	<10	1	4	0


Organic working fluids are selected among hydrocarbons and refrigerants having:

- an Ozone Depletion Potential (ODP) equal to zero
- critical temperatures adequate for fluid evaporation near ambient temperature
- Global Warming Potential (GWP) and National Fire Protection Agency (NFPA) safety codes for the considered fluids have been considered too

CRYOGENIC ORGANIC RANKINE CYCLES ORC: Fluid results for single condensation level cycles



Limiting phenomena are:

- low condensation pressure for fluids with high critical temperature
- high vapor fraction at turbine exit for fluids with low critical temperature

CRYOGENIC ORGANIC RANKINE CYCLES ORC: Fluid results for double condensation level cycles

Positive outcomes with respect to single condensation level:

- much higher net power outputs
- much lower volume ratios for each turbine

CRYOGENIC ORGANIC RANKINE CYCLES

ORC: Plant configuration comparison selected fluids

Parameter	Unit	R32 Single level	R41 double level	
ORC power output	kW	2152.7	3318.8	
Single line electric deficit	kW	-1101.6	20.6	
% of regasification heat provided by ORC		63.74%	73.83%	
		•	HP	LP
Volume ratio in expansion		4.6	2.67	5.65
Condensation temperature	°C	-45	-35.3	-79.8
Condensation pressure	bar	1.41	6.8	0.9
Turbine discharge steam quality		0.917	0.9	0.9
Specific Fuel Consumption (single line)	kg/t	1.16	-0.022	
Specific Fuel Consumption (plant)	kg/t	3.52	2.34	

- The double condensation level cycle allows increasing the ORC power output that is sufficient to cover the line electrical consumption with a small power surplus
- The double condensation cycle require more expensive equipment:
 - the low temperature condenser needs suitable materials for cryogenic conditions
 - installation of two turbines, having an overall volume ratio larger than the one of the single condensation level cycle with R32

CONCLUSIONS

- LNG Regasification Terminals play a strategic role in the energy sources diversification, with a particular emphasis in Europe
- Saipem and PoliMI have analyzed various solutions to improve the energy efficiency of Regasification Terminals: Organic Rankine Cycle (ORC) has the highest potential in terms of energy savings even in the case of cold seawater
- Several schemes, assessed with information from executed EPC projects and referenced equipment manufacturers, confirm the feasibility

Thank you

