

Numerical CFD simulations

on a small-scale ORC expander using a

customized grid generation methodology

<u>Giuseppe Bianchi^{1,2}, Sham Rane², Ahmed Kovacevic², Roberto Cipollone³, Stefano Murgia⁴, Giulio Contaldi⁴</u>

Milan, 13/09/2017

Need of advanced design tools in vane machines

Performance improvement

- Leakages (gaps in the order of tens of μm)
- Friction power
- Optimal expansion ratio
- Expansion phase

Challenges

- Moving and deforming grids
- Multiphase simulations required
- Scarce know-how availability

Outline

- Motivations
- Deforming grid generation procedure
- Simulation setup
- Results
- Experimental validation
- Next challenges

Numerical CFD simulations in positive displacement machines

Grid generation procedure

- Fully parametric C
- Easy to use
- Functional with most of the CFD solvers •

Mesh generation

- 20 nodes on rotor, stator and blade tip boundaries
- 10 nodes on blade walls

	Ports	Rotor (10µm)
Cell type	tetrahedral	hexahedral
Node count (Million)	0.135	0.157
Maximum aspect ratio	23	228
Minimum orthogonality	10.0	11.6

G. Bianchi

Simulation setup in ANSYS® CFX

Mesh deformation	User defined nodal displacement via <u>junction box</u> <u>routines</u> in FORTRAN	Advection scheme	Upwind
Mesh in ports	Tetrahedral with boundary layer refinements (Generated by ANSYS pre-processor)	Pressure-Velocity coupling	Co-located layout (Rhie and Chow 4th order)
Turbulence model	SST – k Omega (Standard Wall Functions)	Transient scheme	Second order (Fully implicit Backward Euler)
Inlet boundary condition	Opening (Specified total pressure and temperature)	Transient inner loop coefficients	Up to 20 iterations per time step
Outlet boundary condition	Opening (Static pressure In case of backflow used as total pressure and temperature)	Convergence criteria	r.m.s residual level 1e-03
Control volume gradients	Gauss divergence theorem	Relaxation parameters	Solver relaxation fluids (0.4)

• Aungier Redlich Kwong real gas model for superheated R236fa

• 0.5° crank angle step

• Boundary conditions:

	Inlet	Outlet	
Pressure [bar _a]	12.1	4.6	
Temperature [°C]	90.5	69.4	
Revolution speed [RPM]	1551		

Simulation results

C

Simulation results

Simulation results

Numerical CFD simulations on a small-scale ORC expander using a customized grid generation methodology

Experimental validation

waste heat stream (90-120°C)

Pressure and temperature measurements across the

machine

• Piezoelectric transducers along the expansion phase

• Speed and electrical power measurements

Numerical CFD simulations on a small-scale ORC expander using a customized grid generation methodology electrical power up to 3kW

Experimental validation

Experimental validation (ongoing)

G. Bianchi

Numerical CFD simulations on a small-scale ORC expander using a customized grid generation methodology

Conclusions

- Development of a customized grid generation methodology for vane machines
- ✓ Single phase real gas simulations on a small-scale ORC expander
- ✓ Validation with indicating pressure data

Next challenges

- Grid sensitivity study
- □ Use of the numerical simulation to optimize the machine performance
- Multi-phase simulations
- □ Fluid-structure simulations to account for friction

Acknowledgements

www.foodenergy.org.uk

Numerical CFD simulations

on a small-scale ORC expander using a

customized grid generation methodology

<u>Giuseppe Bianchi^{1,2}, Sham Rane², Ahmed Kovacevic², Roberto Cipollone³, Stefano Murgia⁴, Giulio Contaldi⁴</u>

Milan, 13/09/2017