WE CAN DO SO MUCH TOGETHER

Performance evaluation of an ORC integrated to a waste heat recovery unit in a Steel mill

Presented by Miguel Ramirez

OUTLINE

1 INTRODUCTION

2 PITAGORAS CONCEPT

5 ANALYSIS & RESULTS

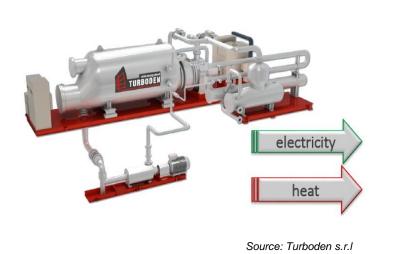
3 CHALLENGES

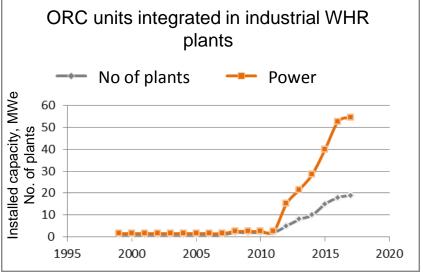
6 CONCLUSIONS

INTRODUCTION

WASTE HEAT RECOVERY (WHR)

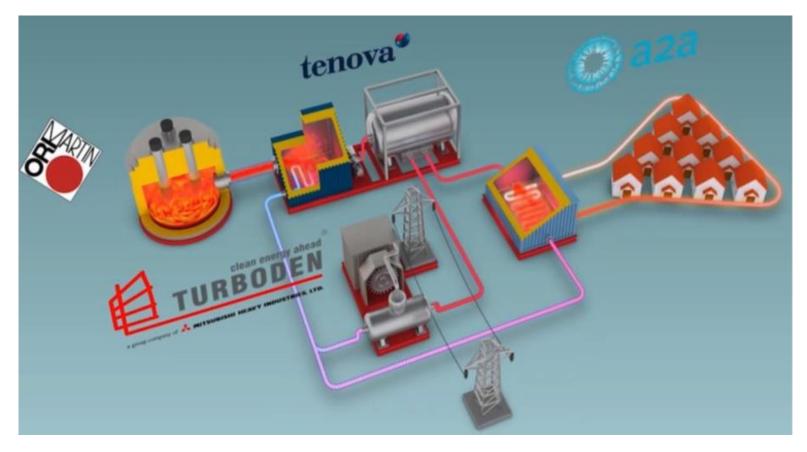
- European industry generates annually approx. 3700 TWh of heat and only 54% arrives to its final destination. (Eurostat, 2012)
- Assuming that 50% of total available waste heat can be recovered would imply a potential of **1000 TWh of useful heat per year.**
- The use of this amount of waste heat for heating, cooling and power generation would entail saving of fossil fuels, and a reduction in GHG emissions of about 2200 million ton CO2/year.


INTRODUCTION

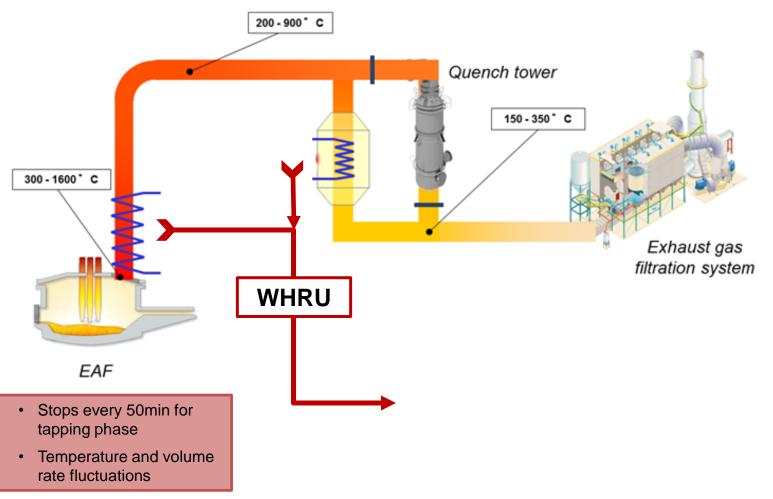

WHRU and ORC units

Industries with highest potential

	Cement	Steel & Metallurgy	Glass
Heat source temp	300° - 350°C	700° - 1200°C	350° - 450°C
Operating hours	up to 7900	< 7500	< 8500
ORC usual power	3-5 MW _e	2-10 MW _e	0,5-3 MW _e

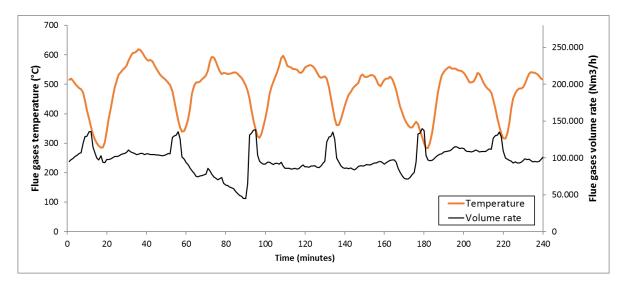

Source: FIRE, Federazione Italiana per l'uso Razionale dell' Energia & Turboden s.r.l.

PITAGORAS DEMO PLANT - BRESCIA


Process: District Heating:

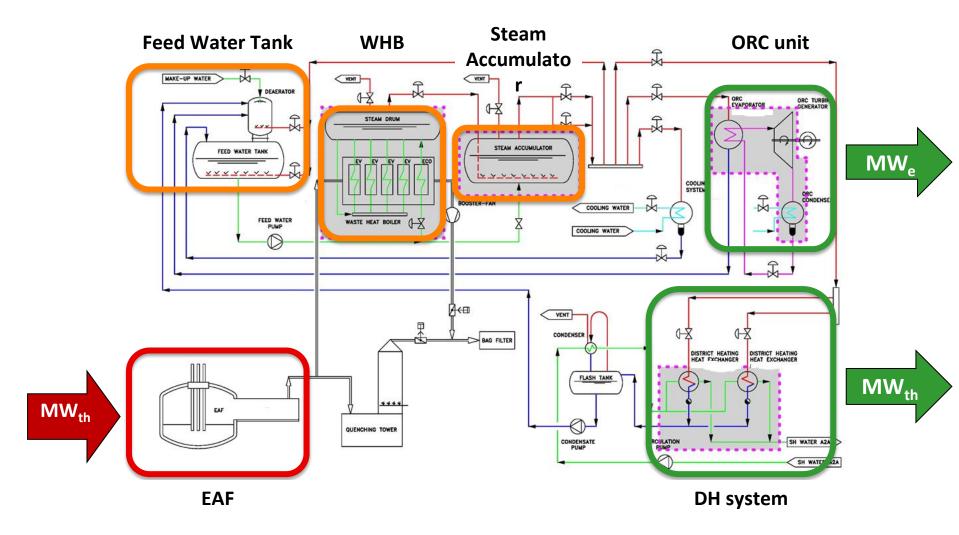
Steel mill, Brescia, Italy Electricity generation: April to October (approx. 1800 kWel) October-April (approx. 10MWth)

PITAGORAS CONCEPT


MAIN TECHNICAL CHALLENGES

- <u>Particles</u> in exhaust gases properties deposition
- <u>Discontinuity of the available waste heat</u> The EAF works as a **batch process** due to the melting phase and the tapping phase
- <u>Heat source highly fluctuating</u> During the tapping phase the available waste heat is drastically reduced. High peaks of heat source during start-ups of the furnace.

iRecovery[®] by TENOVA


STEAM ACCUMULATOR

Stabilizes steam supply, peak control and reduction

PROCESS FLOW DIAGRAM

DEMO PLANT (I)

Electric Arc Furnace (EAF)

- Mixed EAF: scrap melting with electrodes + natural gas burners.
- Flue gas flow partially directed to the WHRU or to the Quenching Tower, depending on operation mode.

Waste Heat Recovery

- Saturated steam generation via thermal exchange with EAF exhaust gases
- 4 Evaporators and 1 Economizer and Steam Drum
- Natural draft (no circulation pumps)
- Nominal Volume flow: 100.000 150.000 Nm³/h
- Inlet waste gas temperature: 500 750 °C
- Boiler working pressure: 16 26 bar (g)
- Steam temperature: 204 228 °C
- Steam generation max: 30 t/h
- Pneumatic system to remove dust cake to maintain tubes clean.

DEMO PLANT (II)

Steam accumulator

- Buffering capacity 6,0 MWht
- Volume 150 m3
- Admissible maximum pressure 30,0 bar(g)

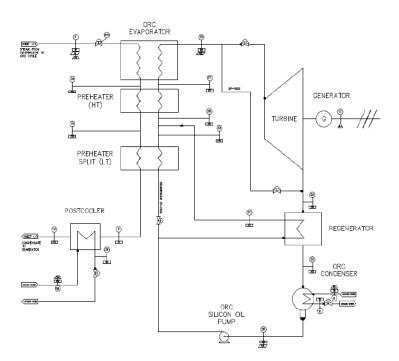
Feed water tank

- Capacity 20,0 m3/h
- Volume 30 m3
- Admissible maximum pressure 6,0 bar(g)

<image>

District heating station, A2A

- Nominal thermal power 10,0 MWth
- Steam flow rate 18,0 t/h
- Working pressure 10,0 bar(g)



DEMO PLANT (III)

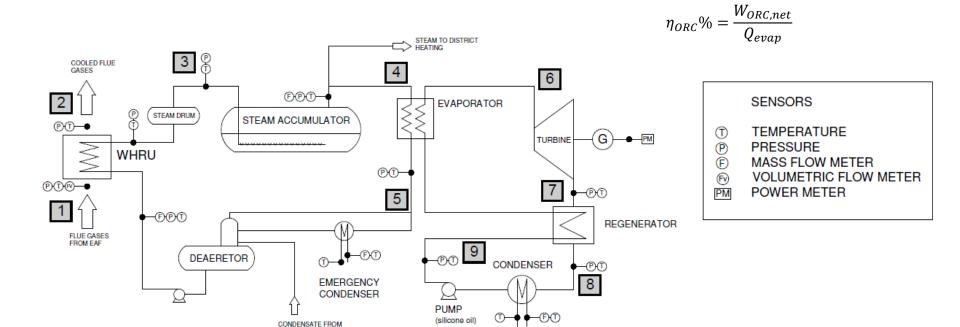
ORC Turbine

- Working fluid: "MM" Silicone oil (hexamethyldisiloxane)
- Inlet pressure working fluid: 7,8 bar(a)
- Outlet pressure working fluid: 0,18 bar(a)
- Nominal thermal power input: 10,4 MWth
- Nominal gross power output: 1,88 MWe
- Nominal net electric power output: 1,82 MWe
- Net electric efficiency:

17,5%

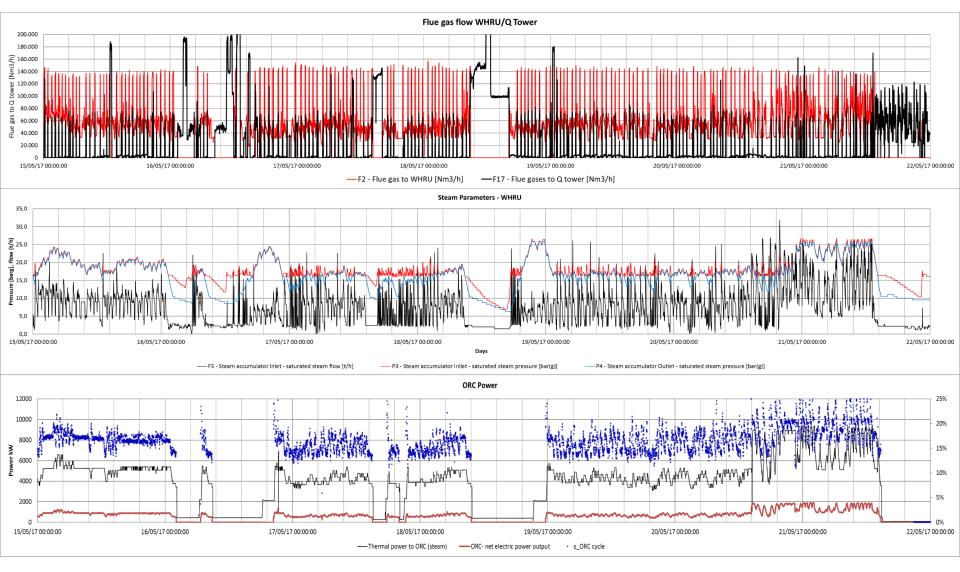
MONITORING & DATA ANALYSIS

- Monitoring start: September 2016
- Data collection every 60 sec
- Temperature, pressure, volume rate, energy meter, gases and fluids...


DISTRICT HEATING

Equations:

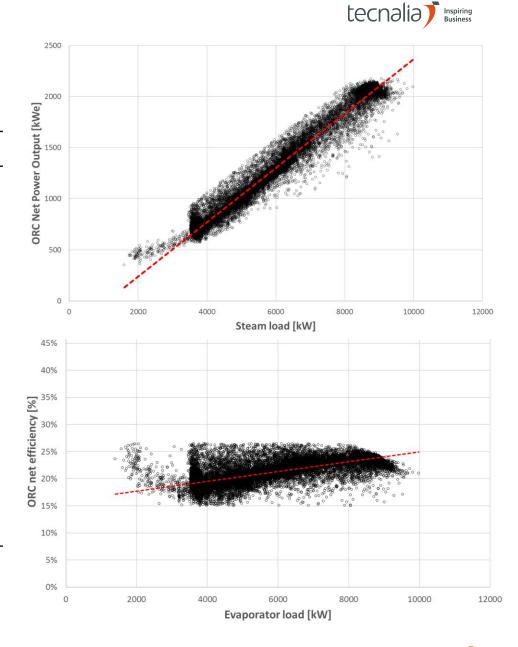
$$Q_{fg} = V_{fg} \cdot \rho_{fg} \cdot (H_{in} - H_{out})$$


$$Q = \dot{m} \cdot (H_{in} - H_{out})$$

 $W_{ORC,net} = W_{OUT} - W_{ORC,Consumption}$

DATA ANALYSIS

RESULTS


STEAM ACCUMULATOR

RESULTS

ORC PERFORMANCE

Parameter	Unit	Value
Flue gases inlet temperature	°C	529,6
Flue gases outlet temperature	°C	200,2
Flue gases flow rate	Nm³/h	50409,8
Steam evaporator inlet temperature	°C	180,9
Steam evaporator inlet pressure	bar	8,0
ORC expansor inlet temperature	°C	162,2
ORC expansor outlet temperature	°C	44,3
ORC expansor inlet pressure	Bar(a)	4,1
ORC expansor outlet pressure	Bar(a)	0,2
Heat load steam accumulator	kW	8953,9
Heat load ORC evaporator	kW	5722,8
Power self-consumption	kW	25,5
Net Power ORC Output	kW	1103,5
Net ORC efficiency	%	19,3

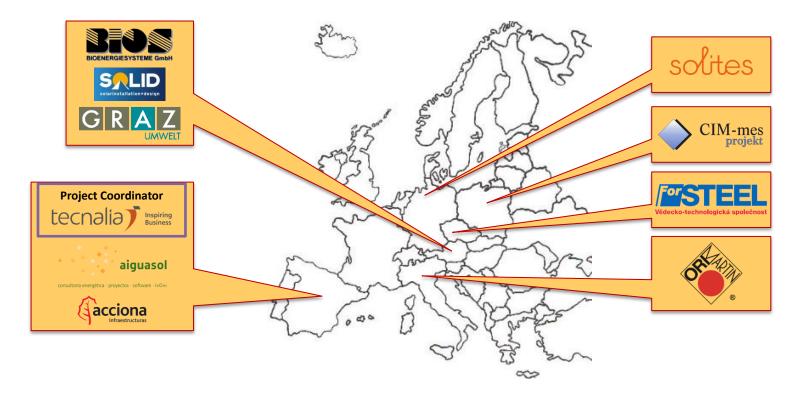
ECONOMIC FIGURES

INVESTMENT		
Waste heat recovery system	6,4	Mio. €
ORC module	1,5	Mio. €
DH net connection	0,4	Mio. €
Miscellaneous (civil works and engineering)	0,8	Mio. €
Total Installation Cost	9,1	Mio €
Plant adaptation costs	1,1	Mio. €
Innovation costs	1,8	Mio. €
Total Project Cost	12,0	Mio. €
Investment subsidies: EC – Pitagoras project *	2,5	Mio. €
Costs		
Operation and maintenance costs	0,18	Mio. €/a
REVENUES **		
Revenues from heat sold	0,5	Mio. €/a
Savings electricity costs	0,4	Mio. €/a

Preliminary economic evaluation shows **payback** period of **12 yrs**. The specific incentive mechanisms based on White Certificates that are in force currently in Italy reduces the payback time of the plant to **4-6 years**.

CONCLUSIONS

- A Waste Heat Recovery unit was installed in high peak fluctuation and discontinuous process of an EAF of a steel plant
- Waste heat is recovered using the iRecovery® of Tenova with an implemented dust removal system
- Fluctuation from the heat source was solved using a steam accumulator capable to extend the ORC operation for periods of approx. 50min
- Positive returns in terms of environmental benefits and energy efficiency, industrial competitiveness, social acceptance
- ORI Martin is the first steel industry to supply waste thermal energy to the urban district heating grid
- Process optimization still ongoing



CONSORTIUM

This project has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° ENER / FP7EN / 314596 / PITAGORAS.

THANK YOU

Visit our blog: http://blogs.tecnalia.com/inspiring-blog/

www.tecnalia.com