

LOW TEMPERATURE HEAT RECOVERY IN ENGINE COOLANT FOR STATIONARY AND ROAD TRANSPORT APPLICATIONS

PIERRE LEDUC, PASCAL SMAGUE – **IFPEN** ARTHUR LEROUX, GABRIEL HENRY – **ENOGIA**

4th International Seminar on ORC POWER SYSTEMS

CONTENT

- Objective of the project
- Benefits of "low temperature approach"
 - (heat recovery in the engine coolant)
- Case study:
 - Passenger car
 - Long haul truck

Conclusion

© IFPEN

OBJECTIVE OF THE PROJECT

• TARGET:

 Joint project of IFPEN and ENOGIA to develop ORC turbine components for heavy truck and passenger car industry

• CONTEXT:

- IFPEN: research and innovation center (energy, transport, environment)
- ENOGIA: "the small turbine ORC company", ORC manufacturer
- TECHNICAL APPROACH:
 - Waste Heat Recovery (WHR) in the coolant circuit of the vehicle

BENEFITS FROM ENGINE COOLANT WHR

In comparison to WHR in the exhaust gas or in the EGR:

- No additional heat to evacuate (from vehicle point of view)
- No contact of the ORC with the exhaust gas
 > No need for material compatible with exhaust corrosive matter
- No parts of the ORC at temperature higher than 100°C (373 K)
 => No costly, high-temperature material
- Evaporator:
 - Integrated into the engine cooling circuit
 - => No engine exhaust back pressure
 - => No risk of evaporator fouling
 - Hot source in liquid form => compact evaporator
 - No hot spot => no risk of damaging the working fluid (Even in the case of a malfunctioning of the ORC pump)
- Stable temperature of the hot source => easier control => Safer control of superheating
- In combination with a well-chosen and non-flammable working fluid:
 - ORC running pressure remains low => lightweight sizing of the parts
 - Low-temperature, low-pressure running conditions => safe system

LIGHTWEIGHT

COMPACT

LOWER COST

SAFE

• Objective of the project

Benefits of low temperature approach

(heat recovery in the coolant)

- Case study:
 - Passenger car
 - Long haul truck

- For vehicle speeds from 50 to 90 km/h, heat dissipation in the coolant is about
 5 to 10 kWth
- For the future, the advent of efficient thermomanagement strategies will even increase coolant temperature up to 105°C

=> higher grade heat source for WHR

Example of heat loss in the coolant of a passenger car

Vehicle speed (km/h - mph)	Engine power (kW)	Heat flux dissipated at radiator (kW)
30 / 19	1.0	3.7
50 / 31	2.3	5.6
70 / 43	4.8	7.1
90 / 56	8.7	10
120 / 75	18.5	12

Measurements on a Ford Focus EcoBoost 1.0 L at IFPEN chassis dyno

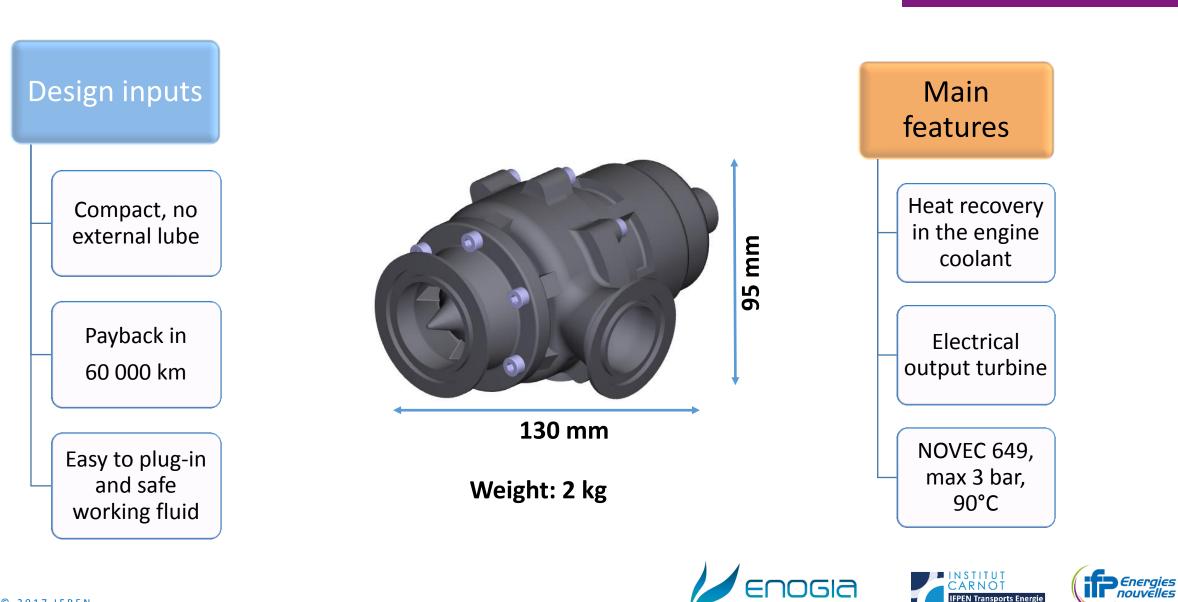
PASSENGER CAR APPLICATION

Using vehicle measurements as input data, a system simulator has been used to:

- Identify suitable working fluids
- Estimate ORC performance

- Hypothesis for calculation:
 - ORC cycle: 85 / 40°C (358 / 313 K)
 - Superheating and subcooling = 5 K
 - *Turbogenerator efficiency = 0.54*
 - *Pump efficiency = 0.15*

Working fluid	Formula	Fluid pressure hp / lp (Mpa)	Fluid mass flow (kg/s)	Turbine Power (W)	Net ORC power (W)	ORC power / engine power (%)
R245fa	C ₃ H ₃ F ₅	0.80 / 0.29	0.03	330	218	4.6 %
HFE 7000	C ₄ H ₃ F ₇ O	0.40 / 0.14	0.04	300	233	4.9 %
NOVEC 649	$C_6F_{12}O$	0.27 / 0.09	0.06	280	221	4.6 %


Computed ORC performance for different working fluids

(Vehicle running point: 70 km/h - 43 mph)

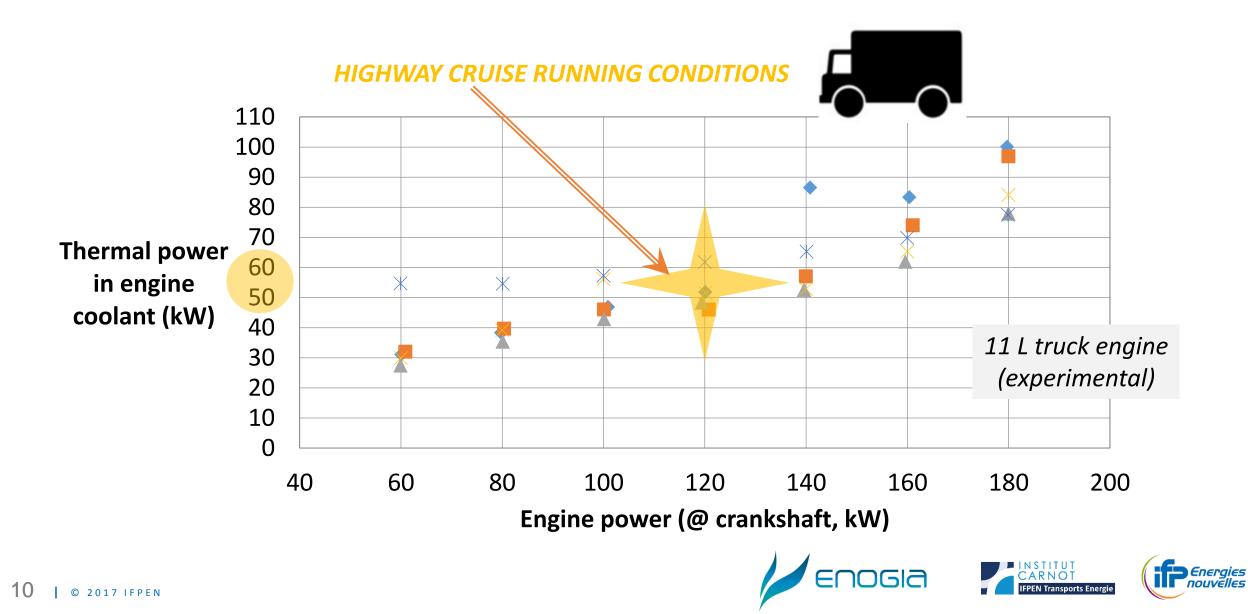
ORC TURBO-GENERATOR FOR PASSENGER CAR

• Objective of the project

Benefits of low temperature approach

(heat recovery in the coolant)

• Case study:



• Long haul truck

Conclusion

HOT SOURCE POWER AVAILABILITY

ORC TURBO-PUMP FOR HEAVY TRUCK

SUSTAINABLE MOBILITY

P Energies nouvelles

IFPEN Transports Energie

CONCLUSION

IFPEN innovates for transport for 70 years...

- ...and ENOGIA is a specialist of small scale ORCs, especially at low temperature
 - 40 references, in 13 countries around the world
- Low temperature (90°C) ORC turbines are being developed, for the road transport industry
- Prototypes have been realized:
 - Purely mechanical, ORC turbo-pump for truck (belt driven)
 - Electric ORC turbo-generator for passenger car
 - ... Testing should start soon
- Heat recovery in engine coolant:
 - is lighter, cheaper and safer than in exhaust gas
 - should reduce fuel consumption by up to 3%
 - in the long term, could be combined with WHR in the exhaust to realize a kind of "ultimate waste heat recovery"

See the turbogenerator for passenger car at ENOGIA's booth!

Thanks for your attention!

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

pierre.leduc@ifpen.fr arthur.leroux@enogia.com

