4th International Seminar on Organic Rankine Cycle Power Systems WELCOME BACK HOME!

Experimental investigation into an ORC-based low-grade energy recovery system equipped with sliding-vane expander using hot oil from an air compressor as thermal source

Stefano Murgia¹, Gianluca Valenti², <u>Daniele Colletta¹</u>, Ida Costanzo¹, Giulio Contaldi¹

Introduction

ORGANIC RANKINE CYCLE (ORC)

Widespread technology for electric power production using low-grade heat source

Context

Oil-flooded air compressor

Large amount of lubricant that need to be cooled down

WASTE HEAT SOURCE with temperatures in the range 80-100°C

POSITIVE DISPLACEMENT EXPANDERS

Sliding-vane expander features:

- relatively low rotational speed
- high expansion ratio
- smooth torque
- low noise and vibration
- simple structure and no valves
- need for **lubrication**

	Displacement	Built-in volume ratio	Rotor length	Rotor diameter
	ст³	-	mm	mm
Simple cycle expander	26.5	3.34	160	80
Recuperative cycle expander	19.95	2.76	90	100

System layouts

Working fluid	R236fa
Hot source	Air compressor lubricant
Cold source	Water

Recuperative cycle

Experimental setup

Instrument	Quantity	Uncertainty
Thermocouple	Temperature	0.5°C
Pressure transducer	Pressure	0.08 bar
Piezoelectric pressure transducer	Pressure	0.01 bar
Flow meter	Flow rate	4 l/min
Tourse Queense motor	Torque	0.1 Nm
lorque & power meter	Angular speed	1 rpm

Thermocouple

Pressure transducer

Cycle points thermodynamic properties

Flow meter

Compressor oil flow rate HTHX rate of heat transfer (indirect) Working fluid mass flow rate (indirect)

Torque & power meter

> Expander mechanical power

Piezoelectric pressure transducer

Results and discussion – ORC Performance

Cycle parameters	Simple cycle	Recuperative cycle
Pump in pressure [bar]	3.4	3.76
Pump out pressure [bar]	10.6	13.0
Pump in temperature [°C]	19.3	14.6
HTHX out temperature [°C]	85.2	81.4
Pump mechanical power [kW]	1.10	0.65
Expander mechanical power [kW]	3.23	3.66
Working fluid mass flow rate [kg/s]	0.295	0.394
HTHX heat rate [kW]	57.25	60.78
Net cycle power [kW]	2.13	3.01
Net cycle efficiency [%]	3.72	4.96

- The system is controlled through the **pump rotational speed variation** (brushless motor), while the **expander rotational speed** is **constrained by grid frequency**
- Pressure and temperature levels are directly related to the heat source (compressor oil 80-100°C) and heat sink (tap water 15-25°C)
- Both the system operate in similar thermal input condition (alternatively coupled with the same compressor)
- Different mass flow rate (higher pressure in recuperative expander inlet cause a greater WF density)
- Better performance for the recuperative
 cycle, in terms of power production and
 overall cycle efficiency

GINAL RO

6

Results and discussion – Indicated diagrams

- The trailing vane is taken as reference for the angular position
- Expander mechanical efficiency Simple 71.8% Recuperative 81.5%
- Over-expansion occurs in the simple cycle expander, while under-expansion occurs in the recuperative cycle expander
- Greater mechanical power (enclosed area in P-V diagram) for the recuperative expander

7

Results and discussion – Exergy analysis

Exergy analysis

System compared to ideal cycle with finite capacity heat source

Exergy efficiency		
Simple cycle	19.5%	
Recuperative cycle	23.4%	

Exergy loss share for recuperative cycle

HTHX LTHX EXP = PUMP REC

Main contribution: LTHX, HTHX and expander

Conclusions

An experimental study is carried out on two ORC recovery system equipped with

Sliding-Vane Rotary Expanders

They are respectively in **simple** and **recuperative configurations** and are coupled with the same thermal source: **hot lubricant** from a **mid-size air compressor**

Simple cycle reaches a net power of 2.13 kW with a cycle efficiency of 3.72%

Recuperative cycle reaches a net power of **3.01 kW** with a cycle efficiency of **4.96**%

Simple cycle expander has a mechanical efficiency of 71.8%

Recuperative cycle expander has a mechanical efficiency of **81.5%**

Exergy analysis on the **Recuperative cycle** highlights the major **exergy loss contribution**: **LTHX, HTHX, expander**

Future works will focus on system optimization and working fluid replacement

THANKS FOR YOUR ATTENTION

Experimental investigation into an ORC-based low-grade energy recovery system equipped with sliding-vane expander using hot oil from an air compressor as thermal source

Stefano Murgia, Gianluca Valenti, Daniele Colletta, Ida Costanzo, Giulio Contaldi

daniele_colletta@mattei.it

