CHALMERS

UNIVERSITY OF TECHNOLOGY

Thermodynamic potential of Rankine and flash cycles for waste heat recovery in a heavy duty Diesel engine

ASME ORC 2017 Conference

Jelmer Rijpkema Milan, 2017-09-15 jelmer.rijpkema@chalmers.se +46 31 772 5037

Purpose of this study

- Thermodynamic potential of WHR for low- and high-temperature heat sources in a heavy duty Diesel engine
- Identify heat sources inside the engine
- Simulations to evaluate the performance of various thermodynamic cycles using different working fluids

Heat sources

Volvo D13 EGR engine

Four available heat sources:

- Charge air cooler (CAC)
- Coolant
- Exhaust gas recirculation cooler (EGRC)
- Exhaust gas out

Energy and exergy analysis

Heat sources – Methods

- GT-Power model
- Validated with experiments in previous project
- Twelve operating points of European Stationary Cycle (ESC)

Heat sources – Results

Analysis based on heat and exergy losses for the ESC operating points

Exergy loss:

$$\dot{X}_{loss} = \dot{Q}_{loss} \frac{\bar{T} - T_0}{\bar{T}}$$

All heat sources show potential for waste heat recovery

Heat sources - Results

Selected operating point for cycle simulations: ESC A50

Source	Fluid	P [bar]	<i>ṁ</i> [g/s]	T _{in} [°C]	^T out [°C]
CAC	Air	2.5	231	152	60
Coolant	Water	1.013	4317	93	90
EGRC	Exhaust gas	2.5	73	472	95
Exhaust	Exhaust gas	1.013	239	251	100

Cycles

- Rankine cycle (RC)
- Transcritical Rankine cycle (TRC)
- Trilateral flash cycle (TFC)

Working fluids

Fluid	<i>Т</i> сг [°С]	P _{cr} [bar]	^T 1atm [°C]	^P 40C [bar]	Туре	GWP ₁₀₀	ODP
Cyclopentane	239	46	0.7	49	lsen.	0	0
Ethanol	240	63	0.2	78	Wet	0	0
R245fa	154	37	2.5	15	Dry	858	0
Water	374	220	0.1	100	Wet	0	0

Conditions and constraints

- Fixed heat input (constant source temperature profile)
- Potential:
 - Low condensation temperature
 - No limitation on condensation pressure
 - High efficiencies

Conditions and constraints

Reference and boundary conditions			Constraints					
Ambient temperature	25	°C	High pressure	Max.	100	bar		
Ambient pressure	1.013	bar			0.9 <i>P</i> cr*			
Condensation temperature	40	°C	Superheating evaporation	Max.	20	K		
Pump isentropic efficiency	0.80		Superheating condensation	Max.	20	K		
Expander isentropic efficiency	0.85*		Pinch point difference	Min.	10	K		
	0.60**		Expander vapor quality out	Min.	0.85			
Pump vapour quality in 0			*: RC, TFC, SFC					

*: RC, TRC, SFC

**: TFC

Results - Thermal efficiencies

Results - Net power

Conclusions

- All four available heat sources inside the engine show potential for waste heat recovery
- Best performing cycles and working fluids depend on heat source:
 - **CAC**: SFC, TFC All fluids \rightarrow 2 kW power
 - **Coolant**: RC All fluids \rightarrow 5 kW power
 - **EGRC**: RC, TRC Ethanol \rightarrow 8 kW power
 - **Exhaust**: All cycles All fluids \rightarrow 6 kW power
- Choice of cycle showed largest impact on performance
 - Thermal matching and cycle constraints

Acknowledgements

CHALMERS

UNIVERSITY OF TECHNOLOGY