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- Heat Exchanger Network (HEN) 
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Some different cycle configurations 
 1-pressure level 2-pressure level, turbines in parallel 
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INTRODUCTION 

Available ORC optimization approaches: 
1. Optimization of cycle variables (p, T) with fixed cycle configuration 

- Martelli et al., 2015 

- Wang et al., 2012 

2. Optimization of cycle variables (p, T) with fixed ORC scheme and 
simplified heat integration (Pinch Analysis) 

- Toffolo et al., 2014 

- Yu et al., 2017  

- Scaccabarozzi et al., 2017 
 

Limitations:  

• Several possible ORC schemes (single vs. multiple levels, with/without 
regenerator, with turbines in series/parallel/tandem) 

• Several possible arrangements of the heat exchangers 

• ORC configuration and Heat Exchangers layout should be optimized 
simultaneously, specially for applications with two or more heat sources 
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PROBLEM STATEMENT 

Given the available heat sources (fuel, hot gases, hot 
oil, etc.) and heat sinks (cooling water, air, etc.), 
determine:  

• the optimal arrangement/optimal layout of the 
Rankine cycle (i.e., power cycle or heat pump, heat 
recovery or CHP, with single or double pressure 
levels, etc.) 

• the optimal layout of the heat exchanger network 
• the cost and optimal area of HXs, mass flow rates, 

pressures and temperatures of the streams 

which maximize the trade-off between efficiency and 
capital costs 
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METHOD 

«SYNHEAT» model 
(Yee & Grossmann 1990) 
Mathematical model for 
Heat Exchanger Networks, 
recovering heat between 
hot and cold streams 

Heat integration and heat exchanger network design 
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METHOD 

Main features: 
 

- Extension of SYNHEAT superstructure 
 

- Complex multiple level heat recovery 
Rankine cycle superstructure 
 

- Selection of Rankine cycle components and 
HEN is modelled with binary variables; mass 
flow rates of cycle streams are optimized 
 

- Design constraints and technical limitations 
(forced matches, forbidden matches, no 
stream splitting) 
  

- Investment costs of the equipment units 
are accurately modeled 

 

Cost models for Heat Exchangers 
Bare module cost of the heat exchanger 
between hot stream i and cold stream j: 

𝐶𝐻𝑋 = 𝐹𝑀 ∙ 𝐹𝑃 ∙ 𝑐𝑟𝑒𝑓 ∙
𝐴𝑖𝑗
𝐴𝑟𝑒𝑓

𝑓

 

where: 𝐴𝑖𝑗  heat exchanger area, 𝐹𝑀 

material factor, 𝐹𝑃 pressure factor, 𝑐𝑟𝑒𝑓 

specific area cost at the reference area 
𝐴𝑟𝑒𝑓, 𝑓 scale-law exponent.  

 

 Superstructure for Rankine cycles allows to reproduce a wide 
range of cycle configurations 

 All heat integration options can be considered systematically 
 Best trade-off between efficiency and capital costs 
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METHOD 

Mixed-Integer Non Linear Programming (MINLP) models 

min
𝑥,𝑦

𝑍 = 𝑐(𝑥, 𝑦)

𝑠. 𝑡.     ℎ 𝑥, 𝑦 = 0

           
𝑔(𝑥, 𝑦) ≤ 0

𝑥 ∈ 𝑋, 𝑦 ∈ 0,1 𝑚

 

•  𝑥  is the vector of the continuous variables of the system (temperatures, pressures, 
mass flow rates, …);  y  indicate the potential existence of  components, such as heat 
exchangers (binary variables) 
• The mass and energy balance equations  ℎ 𝑥, 𝑦 = 0  are usually non-linear 
• Inequalities 𝑔(𝑥, 𝑦) ≤ 0  indicate process specifications or bounds to the continuous 
variables 
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METHOD 

Binary variables for 
plant configuration 

Mass flow rates, heat, 
temperatures, area of HXs 

 
Martelli, E., Elsido, C., Mian, A. & Marechal, F. (2017). MINLP model and two-stage algorithm 
for the simultaneous synthesis of heat exchanger networks, utility systems and heat recovery 
cycles. Computers and Chemical Engineering 

Solution algorithm 
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• Model written in AMPL 
• Thermodinamic properties evaluated with Refprop V9.1 

 



Data 
Process stream ṁcP [kW/K] TIN [°C] TOUT [°C] 

HOT 1 125 150 70 

CW variable 15 20 

EXAMPLE 1 

Results nPentane nButane 

Type of ORC  
two-pressure level, 

turbines in series 
one-pressure level  

Selected components 
A1, A2, E1, E2, D1, D2, 

C1, T5, T2, P1, P3 
A2, E2, D1, C1, T2, P3 

Mass flow rate HP 13.87 kg/s - 

Mass flow rate LP 9.10 kg/s 24.29 kg/s 

Net power 1.33 MW 1.18 MW 

Net electric efficiency 13.31% 11.75% 

Number of heat exchangers 9 5 

Regenerators YES YES 

TAC (cycle + HEN) -0.321 M$/y -0.331 M$/y 
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Output 

EXAMPLE 1 13 
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L1, SAT, 2.83 bar

L3, SAT, 13.4 bar

V6,  2.83 bar
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Process stream ṁcP [kW/K] TIN [°C] TOUT [°C] 

HOT 1 125 150 70 

HOT 2 62.5 100 60 

HOT 3 50 130 70 

CW variable 15 20 

EXAMPLE 2 

Data 

Results 

Working fluid nPentane isoPentane nButane R245fa 

Mass flow rate HP  14.63 kg/s 15.59 kg/s 0 kg/s 0 kg/s 

Mass flow rate LP 19.31 kg/s 20.35 kg/s 32.52 kg/s 57.91 kg/s 

Net power 1.85 MW 1.85 MW 1.57 MW 1.50 MW 

Net electric efficiency 11.93% 12.59% 11.02% 11.21% 

Number of heat 

exchangers 

12 13 9 8 

Regenerator? (Yes/No) Yes Yes No No 

TAC (ORC + HEN) -0.501 M$/y -0.480 M$/y -0.404 M$/y -0.374 M$/y 
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TEMPERATURE 

STAGE 1

150°C 117.6°C 85.9°C 70°C

100°C 88.3°C 60°C

130°C 105.6°C 85.7°C 70°C

115.7°C 83.2°C 30.5°C
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L1, SAT, 0.82 bar
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CONCLUSIONS 

 The methodology allows to systematically optimize not only 

the cycle configuration but also the heat integration and HEN 

while considering the trade-off between efficiency and costs 

 

 Compared to other cycle optimization methods, the 

proposed superstructure is more general as it can 

reproduce a wide variety of Rankine cycles 

 

 The method can be applied to problems with multiple heat 

sources/sinks and it can handle both power and inverse 

cycles 
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Many thanks for your attention! 
Any questions? 

 
 



FUTURE ACTIVITIES 

 Extension: different operating conditions and operational 

flexibility of cycles → multiperiod MINLP 

 

 Improve p and T optimization (numerical issues due to 

integration between AMPL and Refprop) 

 

 Other applications such as inverse Rankine cycles (for 

refrigeration or heat pumps) 
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