

A systematic methodology for the techno-economic optimization of Organic Rankine Cycles

Cristina Elsido^a, Alberto Mian^b, Emanuele Martelli^{a,*}

^a Department of Energy, Politecnico di Milano
^b IPESE Laboratory, Ecole Polytechnique Fédérale de Lausanne

When designing ORCs, it is important to optimize:

- Fluid selection
- Cycle configuration
- Heat Exchanger Network (HEN)
- Cycle variables (p, T, m)

When designing ORCs, it is important to optimize:

- Fluid selection
- Cycle configuration
- Heat Exchanger Network (HEN)
- Cycle variables (p, T, \dot{m})

IN THIS WORK

Some different cycle configurations

1-pressure level

2-pressure level, turbines in parallel

2-pressure level, turbines in series

2-pressure level, tandem configuration

Several possible Heat Exchanger layouts:

one pressure level, two heat sources

HOT 2

Several possible Heat Exchanger layouts:

one pressure level, two heat sources

Available ORC optimization approaches:

- 1. Optimization of cycle variables (p, T) with fixed cycle configuration
- Martelli et al., 2015
- Wang et al., 2012
- 2. Optimization of cycle variables (p, T) with fixed ORC scheme and simplified heat integration (Pinch Analysis)
- Toffolo et al., 2014
- Yu et al., 2017
- Scaccabarozzi et al., 2017

Limitations:

- Several possible ORC schemes (single vs. multiple levels, with/without regenerator, with turbines in series/parallel/tandem)
- Several possible arrangements of the heat exchangers
- ORC configuration and Heat Exchangers layout should be optimized simultaneously, specially for applications with two or more heat sources

Given the available heat sources (fuel, hot gases, hot oil, etc.) and heat sinks (cooling water, air, etc.), determine:

- the optimal arrangement/optimal layout of the Rankine cycle (i.e., power cycle or heat pump, heat recovery or CHP, with single or double pressure levels, etc.)
- the optimal layout of the **heat exchanger network**
- the cost and optimal area of HXs, mass flow rates, pressures and temperatures of the streams

which maximize the **trade-off** between efficiency and capital costs

METHOD: the "p-h" superstructure for dry expansion fluids

6

METHOD: the "p-h" superstructure for wet espansion fluids

POLITECNICO MILANO 1863

7

Heat integration and heat exchanger network design

«SYNHEAT» model

(Yee & Grossmann 1990) Mathematical model for Heat Exchanger Networks, recovering heat between hot and cold streams

Source: Escobar et al. Applied Thermal Engineering 63(1):177-191, 2014

Heat integration and heat exchanger network design

«SYNHEAT» model

(Yee & Grossmann 1990) Mathematical model for Heat Exchanger Networks, recovering heat between hot and cold streams

Source: Escobar et al. Applied Thermal Engineering 63(1):177-191, 2014

Heat integration and heat exchanger network design

«SYNHEAT» model

(Yee & Grossmann 1990) Mathematical model for Heat Exchanger Networks, recovering heat between hot and cold streams

Source: Escobar et al. Applied Thermal Engineering 63(1):177–191, 2014

Main features:

- Extension of SYNHEAT superstructure
- Complex multiple level heat recovery Rankine cycle superstructure

- Selection of Rankine cycle components and HEN is modelled with binary variables; mass flow rates of cycle streams are optimized

- Design constraints and technical limitations (forced matches, forbidden matches, no stream splitting)

- Investment costs of the equipment units are accurately modeled

Cost models for Heat Exchangers

Bare module cost of the heat exchanger between hot stream *i* and cold stream *j*:

$$C_{HX} = F_M \cdot F_P \cdot c_{ref} \cdot \left(\frac{A_{ij}}{A_{ref}}\right)^J$$

where: A_{ij} heat exchanger area, F_M material factor, F_P pressure factor, c_{ref} specific area cost at the reference area A_{ref} , f scale-law exponent.

- Superstructure for Rankine cycles allows to reproduce a wide range of cycle configurations
- All heat integration options can be considered systematically
- Best trade-off between efficiency and capital costs

Mixed-Integer Non Linear Programming (MINLP) models

$$\min_{x,y} Z = c(x, y)$$

s.t. $h(x, y) = 0$
 $g(x, y) \le 0$
 $x \in X, y \in \{0,1\}^m$

• *x* is the vector of the **continuous variables** of the system (temperatures, pressures, mass flow rates, ...); y indicate the potential existence of components, such as heat exchangers (**binary variables**)

- The mass and energy balance equations h(x, y) = 0 are usually non-linear
- Inequalities $g(x, y) \le 0$ indicate process specifications or bounds to the continuous variables

Solution algorithm

- Model written in AMPL
- Thermodinamic properties evaluated with Refprop V9.1

Martelli, E., Elsido, C., Mian, A. & Marechal, F. (2017). MINLP model and two-stage algorithm for the simultaneous synthesis of heat exchanger networks, utility systems and heat recovery cycles. *Computers and Chemical Engineering*

EXAMPLE 1

DataProcess streammc_p[kW/K]HOT 1125CWvariable

-			
Results		nPentane	nButane
	Type of ORC	two-pressure level, turbines in series	one-pressure level
	Selected components	A1, A2, E1, E2, D1, D2, C1, T5, T2, P1, P3	A2, E2, D1, C1, T2, P3
	Mass flow rate HP	13.87 kg/s	-
	Mass flow rate LP	9.10 kg/s	24.29 kg/s
	Net power	1.33 MW	1.18 MW
	Net electric efficiency	13.31%	11.75%
	Number of heat exchangers	9	5
	Regenerators	YES	YES
	TAC (cycle + HEN)	-0.321 M\$/y	-0.331 M\$/y

 $T_{IN} [^{\circ} C]$

150

15

 $T_{OUT} [^{\circ} C]$

70

20

Output

TEMPERATURE STAGES TEMPERATURE TEMPERATURE TEMPERATURE PROCESS STAGE 2 STAGE 3 STAGE 1 HOT 1 150°C 70°C 97°C **A1** A2 93°C 41°C 30.8°C A3 A4 S1 S2 S3 S4 CYCLE **D1** COOLING WATER 47°C RANKINE **D2 D**3 **D4** D5 ---**D6** ---D7 **D8** -----**E1 E2** 93°C 93°C **C1** 32°C 32°C 32°C COOLING WATER **C2** ----------**ISOTHERMAL STREAMS**

Superstructure scheme

Plant scheme

Data	Process stream	mc _P [kW/K]	$T_{IN} [\degree C]$	$T_{OUT} [° C]$
	HOT 1	125	150	70
	HOT 2	62.5	100	60
	HOT 3	50	130	70
	CW	variable	15	20

Results

Working fluid	nPentane	isoPentane	nButane	R245fa
Mass flow rate HP	14.63 kg/s	15.59 kg/s	0 kg/s	0 kg/s
Mass flow rate LP	19.31 kg/s	20.35 kg/s	32.52 kg/s	57.91 kg/s
Net power	1.85 MW	1.85 MW	1.57 MW	1.50 MW
Net electric efficiency	11.93%	12.59%	11.02%	11.21%
Number of heat	12	13	9	8
exchangers				
Regenerator? (Yes/No)	Yes	Yes	No	No
TAC (ORC + HEN)	-0.501 M\$/y	-0.480 M\$/y	-0.404 M\$/y	-0.374 M\$/y

EXAMPLE 2

Superstructure scheme

nPentane

EXAMPLE 2

Plant scheme

- The methodology allows to systematically optimize not only the cycle configuration but also the heat integration and HEN while considering the trade-off between efficiency and costs
- Compared to other cycle optimization methods, the proposed superstructure is more general as it can reproduce a wide variety of Rankine cycles
- The method can be applied to problems with multiple heat sources/sinks and it can handle both power and inverse cycles

Many thanks for your attention! Any questions?

- Improve p and T optimization (numerical issues due to integration between AMPL and Refprop)
- Other applications such as inverse Rankine cycles (for refrigeration or heat pumps)

