EXOEE

Cost to benefit ratio of an exhaust heat recovery system on a long haul truck

ORC Conference - Milano September 15th, 2017

Rémi DACCORD EXOES – Founder / CTO / CIPO remi.daccord@exoes.com

Exoès at a glance

Our skills

EXOES is an engineering company providing its customers with: | The strict of the str

Prototype technologies:

Swashplate

Crankshaft

Scroll

Valvetrain

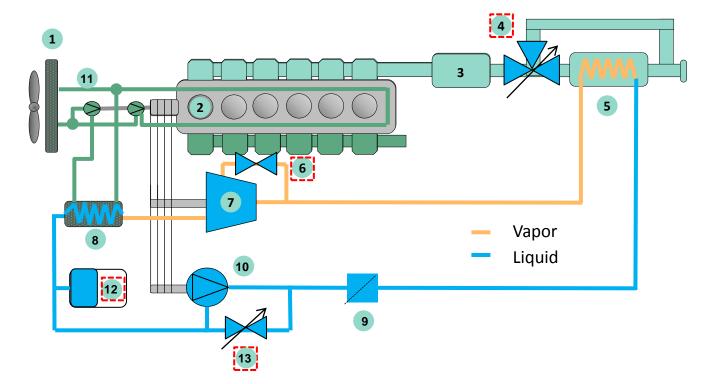
Pump

Experienced in demo-vehicles

References:

Demotruck:

- EXOES, Renault-Trucks and Faurecia
- a 2-year program
- Waste heat recovery
- Integration of an EXOES expander
- Real life driving and roller test bench


Is there a business case for WHR on long haul trucks?

Exhaust heat recovery typical layout

- ➤ Heavy commercial vehicles typical class 8 truck
- Focus on exhaust heat recovery only
- ➤ Ethanol based working media

- 1: Main radiator
- **2: ICE**
- 3: After-treatment
- 4: Exhaust bypass valve
- 5: Exhaust evaporator
- 6: Expander Bypass valve
- 7: EVE Expander
- 8: Condenser
- 9: Filter
- 10: Feed pump
- 11: Cooling pump
- 12: Expansion vessel
- 13: Control valve
- \longrightarrow to be controlled

Challenges for the ORC

Ethanol bottoming Rankine cycles are facing the following challenges to enter OEM development programs:

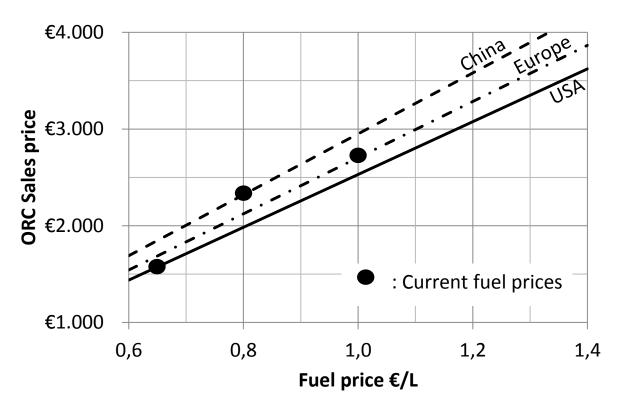
> Safety case

- > Flammable working fluid
- ➤ Extensive risk analysis done by TÜV SÜD / FPT for IVECO
- ➤ System supplier or OEM responsibility

Business case

- ➤ Ratio cost / benefit
- ➤ Prove the fuel savings
- ➤ Reduce the component and integration costs

Durability case ▶


- ➤ Prove the component reliability
- ➤ Alcoholate corrosion
- ➤ Fluid ageing: lubricant and ethanol breakdown

Target cost of the system

➤ Link between payback time, fuel saving and system cost

Sales price of the ORC system for a 2-year payback assuming 3% fuel saving

>Assumptions:

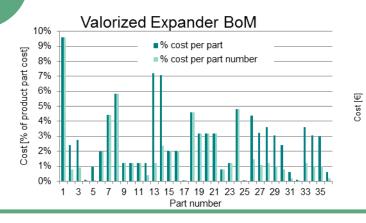
	Europe	USA	China	Unit
Mileage	130,000	110,000	150,000	km/y
Fuel	1	0.65	0.8	€/L
Consumption	on 35	44	35*	L/100km
ORC Maintenance	100	100	100	€/y

^{*:} projected in 2025 with new regulation implementation

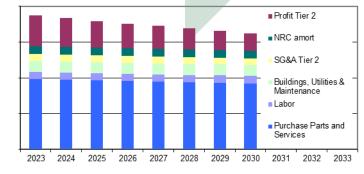
Our costing method

➤ Costing method applied by Exoès supported by external cost killers:

Part cost


- Bill-of-materials
- Detailed cost on 20% of parts that make 80% of costs
- Simplified estimation of 80% of references
- Make/Buy strategy

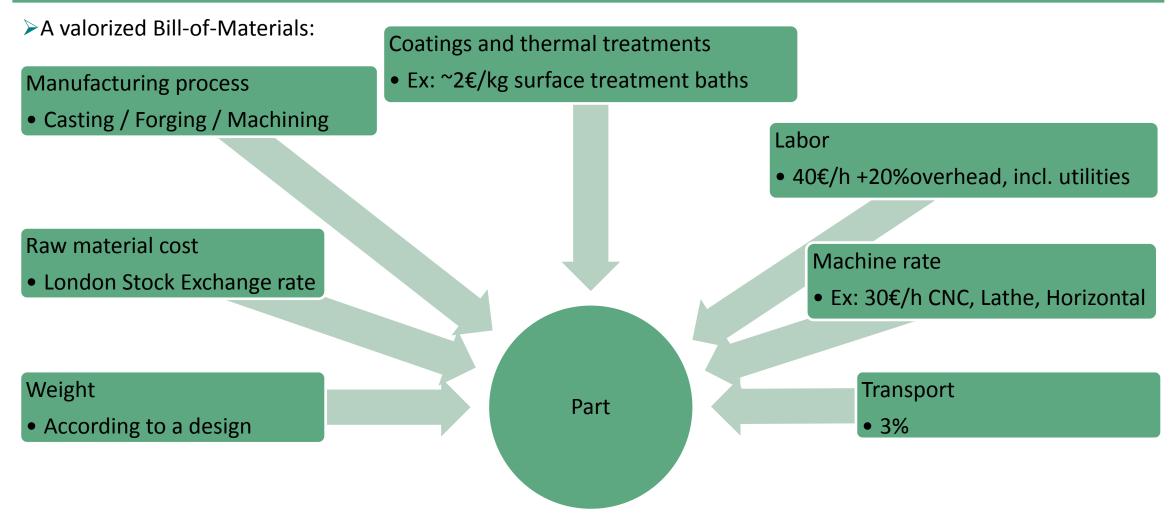
Assembly cost


- Assembly process
- Factory and assembly line

Sales cost

- R&D cost depreciation
- DCF for profit

Cost breakdown of Expander sales cost


Manufacturing scheme

➤ Sales scenario:

	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8
Sales per year (unit/y)	5 000	10 000	15 000	25 000	32 500	42 500	52 500	67 500
Cumulated sales (units)	5 000	15 000	30 000	55 000	87 500	130 000	182 500	250 000

- ➤ Relatively low volumes. It implies as little investment as possible:
 - ≥100% buy strategy (Tier1s buy parts and "only" assembles them)
 - ➤ No fully-automated assembly lines

Built-up of a valorized BoM

Built-up of the system cost

➤ Component sales price: Assembly line • Ex: 1,000,000€ for a semi-automatic line – 3 stations Tools Assembly labor • Ex: 300,000€ casting die SG&A – Profit Purchased parts and services

Component

sales price

• +30%

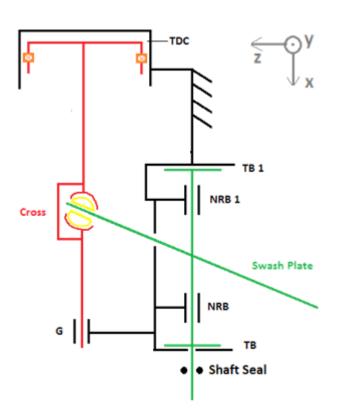
Or Discounted cashflows

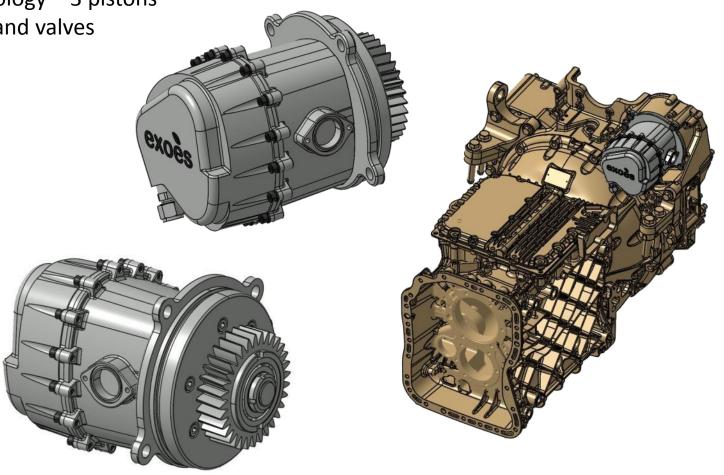
➤ System sales price:

Valorized BoM

>sum of components + OEM margin (+80%)

Expander design and cost

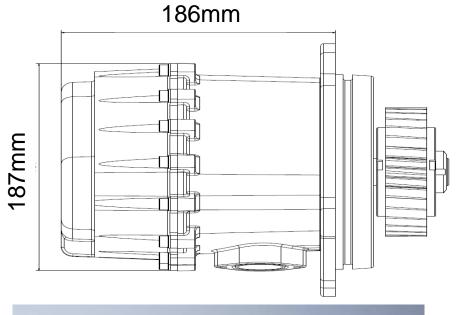




Exoès piston expander technology

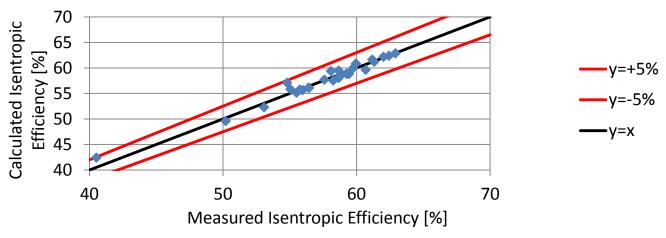
➤ EVE-T2: Single acting swashplate technology — 3 pistons

➤ Inlet poppet valves, and exhaust ports and valves

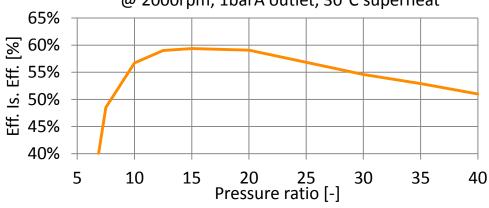


Expander Datasheet

	EVE-T2
Speed range	1,000 - 4,530 RPM
Shaft power range	<12 kW
Eff. Is. efficiency range	Typ. 55 - 65%
Size	< D200xL200mm
Weight without coupling	15kg
Oil circulation rate	Typ. 10%
Outlet pressures	1 - 4barA
Inlet pressures	<40 barA
Nominal pressure ratio	15 – 20 for ethanol
Nominal gear ratio	1.5 – 2.5 for trucks
Transmission	Freewheel
Bypass valve	Integrated



Expander tests and model calibration

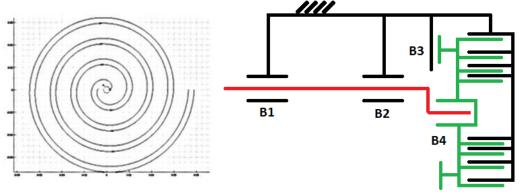


Effective Isentropic Efficiency measured* vs calculated

Effective Isentropic Efficiency comparison

@ 2000rpm, 1barA outlet, 30°C superheat

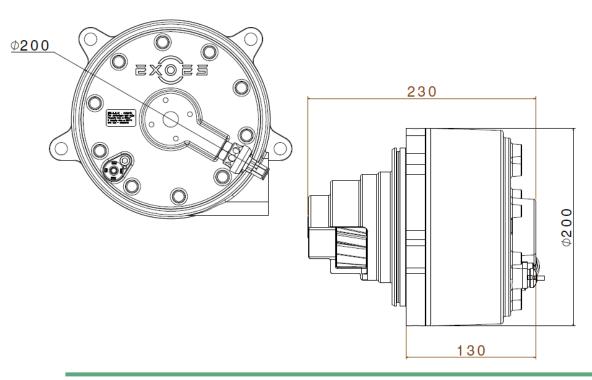
Effective isentropic efficiency:

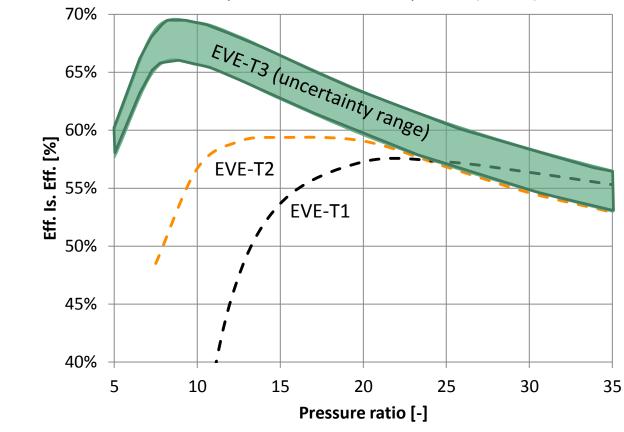

$$\eta_{eff,is} = rac{\dot{W}_{shaft}}{\dot{M}(h_{in} - h_{out,is})}$$

*Measured = calculated based on measured values

Future expander generation

➤ Compliant Scroll – Volume ratio 4.6 – Capacity 139cm³

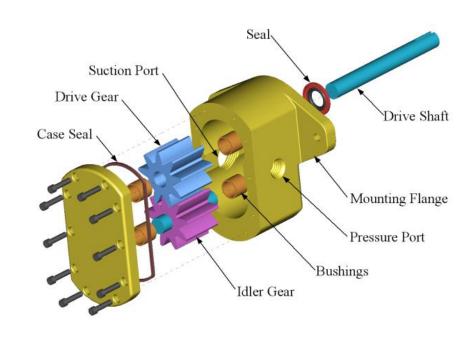

	EVE-T2 - piston	EVE-T3 - scroll
Speed range (RPM)	1,000 - 4,530	1,000 – 6,000
Shaft power range	<12 kW	<15 kW
Eff. Is. efficiency range	Typ. 55 - 65%	Typ. 60 - 75%
Size	< D200xL200mm	< D200xL130mm
Weight w/o coupling	15kg	16kg
Oil circulation rate	Тур. 10%	Typ. 5%


Efficiency & cost forecast

- ➤ Higher efficiency expected
- ➤ Projected cost for 50,000 pcs/year
 - > 350€ ±50€ sold to OEM

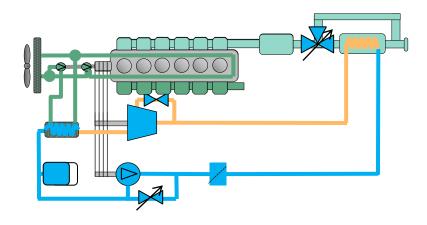
Efficiency comparison with Ethanol 95.5% mass

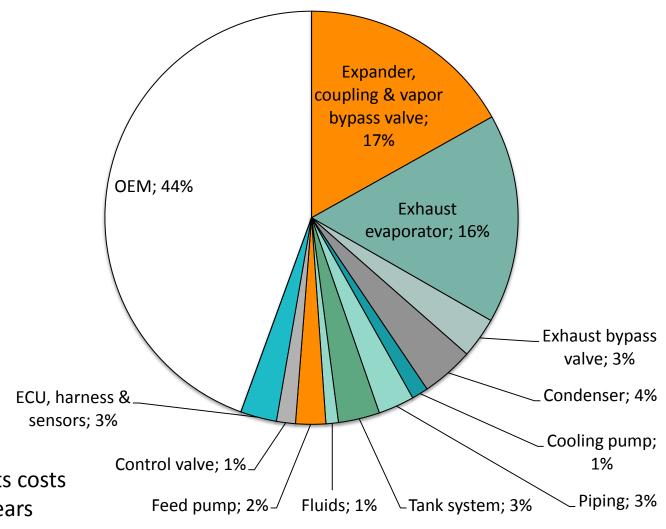
@ 2000rpm, 1bar outlet, 30°C superheat (EVE-T1 and T2) @ 3600rpm, 1bar outlet, 20°C superheat (EVE-T3)


Pump design and cost

Pump Datasheet

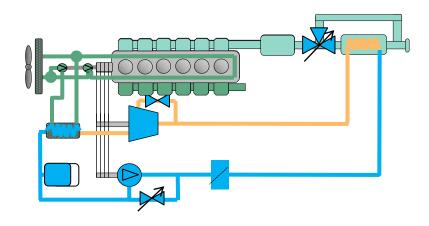
Speed range		PHP-T1
		750 – 6,000 RPM
	Max flow	7 L/min
	Fluid	Ethanol – Water mixtures
	Size	D100mm x L200mm
	Weight	<5kg
	Required subcooling	~5°C
	Inlet pressure	1 – 4 barA
	Outlet pressure	<40 barA
	Optional : motor	24Vdc Electric motor integrated Communication: CAN
	Other options:	Filter Relief valve Pressure & Temperature sensors

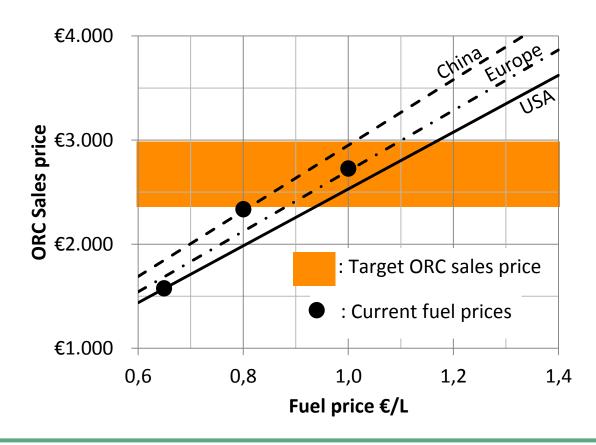

Conclusion



Estimated system price

Estimated sales price: 2,700€ (± 300€)


- ➤ Some assumptions:
 - ➤ Exhaust WHR (No EGR recovery)
 - > Radiator carried over
 - ➤ Mechanical feed pump
 - ➤ Mechanical coupling of expander
 - ➤OEM costs and profit = 80% of components costs
 - >~50,000 unit/year; 250,000 units over 8 years


Business case

- > Fuel savings:
 - ➤ measured on demovehicle 11L SCR only engine
 - 40-ton truck
 - ➤ between 2.75 to 3% according to driving cycle
 - ➤ Paper to come with detailed results

➤ Valid business case (at least in Europe)

Sales price of the ORC system for a 2-year payback assuming 3% fuel saving

