

Iterative Approach for the Design of an Organic Rankine Cycle

4th International Seminar on ORC Power Systems, 13-15 Sep. 2017, Milano

Sebastian Kuboth, Marc Neubert, Markus Preißinger and Dieter Brüggemann

Organic Rankine Cycle application areas

ORC is a well-known technology for:

- Geothermal power generation
- Biomass fired power plants

Problems of other areas of application:

Wide range of boundary conditions (temperature and heat load of the heat source/sink)

Iterative approach for the design of an ORC

13-09-2017

ORC design instruments

Simulation model	 Simulation tool Aspen Plus® Release 8.8 Stationary simulation Detection of optimum system operation
Small-scale test rig	 Thermal oil heated and cooled by water 1 kW nominal power, working fluid R365mfc Scroll expander and gear pump Brazed plate heat exchanger including an internal recuperator
Iterative optimization	 Repetitive comparison of simulation and test rig data Improvement of simulation accuracy by empirical test rig data Sensitivity analysis

Iterative approach for the design of an ORC

13-09-2017

Iterative design approach

Iterative approach for the design of an ORC

13-09-2017

Simulation model

Boundary conditions:

Parameter	Set value
Evaporator thermal oil inlet temperature	200 °C
Condenser pinch	5 K
Subcooling (at the pump inlet)	10 K
Recuperator pinch	18.77 K

Iterative approach for the design of an ORC

13-09-2017

First simulation – results

11.5 12 1200 condensing temperature 45 °C 11.0 condensing temperature 55 °C thermal efficiency (%) 1000 condensing temperature 65 °C 10.5 net output power (W thermal efficiency (%) 800 10.0 9.5 600 9.0 400 8.5 C 45 °C - efficiency 2 200 T C 65 °C - efficiency 8.0 T_C 65 °C - power C 45 °C - power 7.5 0 0 40 60 80 100 10 20 30 40 50 60 70 80 90 100 0 pressure / maximum pressure (%) recovered heat / nominal rec. heat (%)

Sensitivity analysis

Iterative approach for the design of an ORC

13-09-2017

Test rig (I)

Iterative approach for the design of an ORC

13-09-2017

Test rig (II)

Iterative approach for the design of an ORC

13-09-2017

Test rig measurements

- Examination of nine different simulation points:
 - partial and full load (about 30 %, 65 % and 100 %)
 - condensing temperatures of about 45 °C, 55 °C and 65 °C
- Measurements of 15 minutes with stationary conditions and subsequent averaging

Iterative approach for the design of an ORC

13-09-2017

Comparison of measurement and simulation

- Moderate compliance between simulation and measurement
- Discrepancy of:
 - Condensing temperature/pressure
 - Subcooling
 - Evaporator transferred heat
 - Regenerator transferred heat
 - Condenser transferred heat
 - Expander isentropic
 efficiency at high rotational
 speed

Iterative approach for the design of an ORC

13-09-2017

Empirical correlations were implemented into the simulation model:

- Subcooling
- Condenser pinch point

Condensing pressure

- Recuperator transferred heat
- Evaporator transferred heat
- Heat and pressure losses

Expander isentropic efficiency was not adapted due to insufficient data.

Iterative approach for the design of an ORC

13-09-2017

Comparison of new measurement and adopted simulation

slide 12

the design of an ORC

Measurement accuracy assessment and comparison

Average deviation I: 1.50 % New average deviation (II): 0.68 %

Average deviation I: 7.09 % New average deviation (II): 1.96 %

Iterative approach for the design of an ORC

13-09-2017

Measurement accuracy assessment and comparison

- Mean relative deviation of measurement and simulation: enthalpy → ± 0.68 %, pressure → ± 1.96 %
- Mean relative error of measurement equipment: temperature → ± 0.97 %, pressure → ± 0.58 %
- Mean relative error of measurement repitition: enthalpy → ± 0.49 %, pressure → ± 2.47 %

Iterative approach for the design of an ORC

13-09-2017 slide 14

Summary

- An iterative approach for the design of an ORC was demonstrated.
- A steady state simulation model was developed and sensitivity analysis were carried out.
- A test rig was built to reproduce the simulation results.
- Simulation accuracy can be highly improved by implementing experimental results of the overall system in the simulation tool.
- The average mean deviation of measurement and simulation could be reduced from 4.3 % to 1.3 % by a single implementation of measurement data.

Iterative approach for the design of an ORC

13-09-2017

Thank you www.zet.uni-bayreuth.de

Sebastian Kuboth, Marc Neubert, Markus Preißinger and Dieter Brüggemann

