

A Retrofit for Geothermal ORC based on Concentrated Solar Thermal Systems

4th International Seminar on ORC Power Systems 2017, 13-15 Sept., Milano

F. Heberle, M. Hofer and D. Brüggemann

Motivation Geothermal power generation in Turkey

Solar Retrofit for Geothermal ORC F. Heberle et al. 14.09.2017

al.

- Installed capacity*: 650 MW_{el} in 2015; 1284 MW_{el} expected in 2020
- Increasing part of binary power plants (ORC) \rightarrow about 320 MW_{el} in 2016
- Air-cooled units retrofitted by (solar-thermal) parabolic trough collectors

*M. Antics, R. Bertani, B. Sanner; *Summary of EGC 2016 Country Update Reports on Geothermal Energy in Europe*, Proceedings of the European Geothermal Congress 2016, Strassbourg (France), 2016

Motivation

Geothermal power generation in Turkey – General aspects

Astolfi et al. (2011):

- Solar-geo hybrid
- Annual simulation
- Supercritical ORC

Ghasemi et al. (2014):

- Solar retrofit
- Case study (Turkey)
- Selected days

DiMarzio et al. (2015):

- Stillwater, USA
- Existing hybrid plant
- Preheating brine

en*pros* 📕

Geological background / project experience in Turkey

> **Solar retrofit** (case study; Büyük Menderes Graben)

Specifications of the parabolic trough collector (CF 100)

Objectives

Concepts

- Integration of solar heat input
- Simulation over the period of one yearEfficiency

Limitations

- Capacity of existing components
- Thermal stability

(Economics)

Solar Retrofit for Geothermal ORC F. Heberle et al.

Methods

Geothermal binary power plants in Turkey - standard scheme

Solar Retrofit for Geothermal ORC F. Heberle et al. 14.09.2017

Methods

Promising concept for the solar retrofit - superheater

Solar Retrofit for Geothermal ORC F. Heberle et al. 14.09.2017

Methods Off-design calculation of the ORC unit

Turbine*:
$$\eta_{is} = r_h r_v \eta_{is,Design} = f(\Delta h, \dot{V}_{outlet})$$

Preheater, condenser, recuperator**:
$$kA_{off} = kA_{des} \left(\frac{\dot{m}_{off}}{\dot{m}_{Design}}\right)^n$$

Evaporator:

$$\Delta T_{\rm pp} = {\rm constant}$$

$$p_{\text{evp}} = \text{constant}; \ p_{\text{cond}} = f(\vartheta_a, \dot{V}_{air})$$

*Ghasemi H, Sheu E, Tizzanini A, Paci M, Mitsos A. *Hybrid solar–geothermal power generation: Optimal retrofitting*. Appl Energy 2014;131:158–70. doi:10.1016/j.apenergy.2014.06.010.

** Manente G, Toffolo A, Lazzaretto A, Paci M. An Organic Rankine Cycle off-design model for the search of the optimal control strategy. Energy 2013;58:97–106.

Solar Retrofit for Geothermal ORC F. Heberle et al.

Results

Off-design calculation of the ORC unit

Solar Retrofit for Geothermal ORC F. Heberle et al.

14.09.2017

Results

Solar superheating – Design identifcation for the retrofit

- \rightarrow No problems rearding thermal stability ($\mathcal{G}_{max,ORC} = 200 \text{ °C}$)*
- \rightarrow Solar heat input is limited by pump and generator capacity

*Pasetti M, Invernizzi CM, Iora P. Thermal stability of working fluids for organic Rankine cycles: An improved survey method and experimental results for cyclopentane, isopentane and n-butane. Appl Therm Eng 2014;73:764–74.

Methods II

Solar superheating – detailed simulation over the period of one year

Solar Retrofit for Geothermal ORC F. Heberle et al. 14.09.2017

slide 10

et al.

Methods II

Solar superheating – detailed simulation over the period of one year

Solar Retrofit for Geothermal ORC F. Heberle et al. 14.09.2017

Methods II

Solar superheating – detailed simulation over the period of one year

Solar Retrofit for Geothermal ORC F. Heberle et al.

Results II Simulation over period of one year – (Case 1: 21.6 MW_{th})

 \rightarrow In the summer, the retrofit provides up to 30 MWh/d additional power

 \rightarrow During the winter and early spring, the amount of DNI is relatively low

14.09.2017

Results II

Simulation over period of one year – Variation of solar field size

Design/performance parameter	unit	value
Solar thermal power	MW	21.6
Effective area of the collectors	m ²	32340
Inlet temperature of the heat transfer fluid	°C	172.3
Outlet temperature of the heat transfer fluid	°C	200
Mass flow rate of the heat transfer fluid	kg/s	178.4
ORC turbine inlet temperature	°C	163.1
Degree of superheating (ORC)	К	20
Heat transfer area of the solar superheater	m ²	259.5
Additionally generated electricity per year	GWh/a	5.2
Relative increase of the generated electricity	%	4.5
Annual solar insolation to electric efficiency	%	10.5

 \rightarrow Under technical and thermodynamic cirteria the retrofit is reasonable

Conclusions

Present study

- Superheating is not limited by thermal stability of the ORC working fluid.
- Generator and pump capacity is a constraint for the solar heat input.
- An increase of the annual generated electricity by 5 % is feasible.

Economic aspects

- Economic feasibility is guaranteed with a yearly DIN sum of 2086 kWh/m².
 → 10 % increase compared to the yearly DIN average close to Sulatnhisar
 → For comparison Stillwater, Nevada (USA) yearly ID sum is 2160 kWh/m²
- For details, please see:

F. Heberle, M. Hofer, N. Ürlings, H. Schröder, T. Anderlohr, D. Brüggemann: *Techno-economic analysis of a solar thermal retrofit for an air-cooled geothermal Organic Rankine Cycle power plant.* Renewable Energy, vol. 113, pp. 494-502, doi:10.1016/j.renene.2017.06.031, June 2017

Solar Retrofit for Geothermal ORC F. Heberle et al. 14.09.2017

Outlook

- Improving the model of the solar field
- \rightarrow Auxiliary power requirements of the solar thermal unit and pressure losses
- Decreasing the uncertainties of the entire model
- \rightarrow Reduction of the simulation step size or even a dynamic simulation
- ightarrow Available climate data
- Legal restrictions
- \rightarrow Feed-in tariffs for hybrid power plants are not clearly defined
- \rightarrow Land use might be regulated due to extensive agriculture

Thank you www.zet.uni-bayreuth.de

F. Heberle, M. Hofer and D. Brüggemann

