

Possibilities of water-lithium bromide absorption power cycles for low temperature, low power and combined power and cooling systems

VACLAV NOVOTNY, VACLAV VODIČKA, JAKUB MAŠČUCH, MICHAL KOLOVRATNIK

ORC 2017, 13.09.2017, MILANO, ITALY

OUTLINE

- INTRODUCTION
- CONFIGURATIONS AND MODEL DESCRIPTION
- RESULTS
- CONCLUSION AND FUTURE WORK

INTRODUCTION

- ISSUES IN LOW TEMPERATURE WASTE HEAT RECOVERY

- Large irreversibility in heat exchangers
- low utilization of the heat source

Standard / typical solutions = ORC

- Industrial standard, robust, reliable
- Low heat of vaporization
- Still limited negative effect growing with decreasing heat source temperature
- Result is still very low efficiency, hardly economical application

INTRODUCTION

- WASTE HEAT RECOVERY TECHNOLOGIES

SOLUTIONS TO REDUCE IRREVERSIBILITY

Current

Lower latent heat compared to specific heat (ORC cycles)

In research or only limited commercialization

- Variable boiling point
 - use of (zeotropic) mixture as working fluid –temperature match of hot and cold fluid due to temperature glide
- Supercritical state of working fluid
 - no boiling point, specific fluid for specific temperature
- Cascading of multiple cycles, multiple pressure systems
- Trilateral cycle with expansion from saturated liquid

INTRODUCTION

- ABSORPTION POWER CYCLE (APC)

- Working fluids enabling temperature glide of boiling point
- Range of possible working fluids
 - Cooling cycles LiBr H₂O, H₂O-NH₃ (commercial), other salts, ionic liquids refrigerants mixtures (mostly only research work)
 - Power cycles previous work limited to NH₃-H₂O, only few theoretical works about different working fluids, but their range should be same or larger than for cooling, not so limited by freezing problems
 - Possibility of combining into a single power & cooling system

INTRODUCTION APC technology operation

APC

INTRODUCTION APC technology features

- Once through counterflow HXs
 - high exergy efficiency
- Cyclone separator of liquid and vapour
- Whole cycle under vacuum conditions
 - Similarly to absorption cooling
- Vapour free of LiBr and after separation is superheated
- Low pressure allows high efficiency turbine (but bulky)
- Working fluid handling mostly known from chillers

Potential issues

- Vacuum in whole working fluid area
- Corrosion from the solution
- Large temperature glide in HXs not proven

CASE SCENARIOS, MODELS DESCRIPTION - GENERAL DESCRIPTION

Case scenarios

- Small scale WHR
- Low temperature geothermal
- Integration with low temperature solar thermal collector
- Bottoming of cascaded cycles
- Combined cooling and power cycle
- Analysed potential of LiBr APC for each case
- Compared to ORC with R245fa used as a benchmark (simple and for solar also recuperated)

Models

- Based on mass and energy balance
- Heat transfer defined by selected pinch points
- Included effect of heat rejection parasitic load (dry cooler circuit or air cooled condenser, coolant pressure drop)
- Boundary conditions
 - See the manuscript
- Calculated in Engineering Equation Solver
- Each cycle model optimized for maximal power production

CASES – Waste Heat Recovery

Heat source: 100°C, 10 kg/s hot air

(ORC only nonregenerative as it hasn't thermodynamic benefit)

	W_c [kW]	W_{net} [kW]	$\eta_c \ [\%]$	η_{WHR} [%]	$T_{WH~out}$ [°C]	p _{c,high} [kPa]	p _{c,low} [kPa]
ORC APC	9.58 13.43	5.36 9.78	5.43 5.51	0.63 1.29	85.6 75.9	541 6.7	252 1.7
	<i>m_{cw}</i> [kg/s]	m _{ca} [kg/s]	<i>UA_{ev}</i> [kW/K		A _{cond/abs} [kW/K]	UA _{rec} [kW/K]	UA _{DC} [kW/K]
ORC APC	3.8 3.2	15.4 13.1	6. 11.		18.3 39.8	2.1	16.7 23.0

CASES – Low Temperature Geothermal

Heat source: 70°C, 10 kg/s geothermal water

(ORC non-regenerative as it hasn't thermodynamic benefit)

	W_c [kW]	W _{net} [kW]	η_c [%]	η _{WHR} [%]	T_{geofl}	uid out [°C]	p _{c,high} [kPa]	p _{c,low} [kPa]
ORC APC	25.5 36.9	14.2 28.0	4.6 4.47	0.6 1.22		56.7 50.3	382 2.6	199 0.8
	m _{ca} [kg/s]	UA _{eva} [kW/K]	UA _{cond/abs} [kW/K]		UA _{rec} [kW/K]			
ORC APC	61.0 50.7	56.3 138.5	38.7 74.5		- 8.9			

CASES – Low Temperature Solar

Heat source: solar vacuum collector Case of location ans time – Prague, May ($G = 321 \text{ W/m}^2$, $T_{amb} = 14^{\circ}\text{C}$), collector Eurosun Sunstar DF 100/6

CASES – Bottoming cycle

Heat source: Desuperheating, condensing and subcooling MM

Condensation pressure 74 kPa ~ 90 °C

	W_c [kW]	W_{net} [kW]	$\eta_c \ [\%]$	$\eta_{net} \ [\%]$	<i>P_{c,high}</i> [kPa]	p _{c,low} [kPa]	m_{cw} [kg/s]
ORC	4.15	3.12	8.30	6.23	895	260	0.917
rec. ORC	4.31	3.22	8.62	6.44	895	258	0.965
APC	4.95	3.92	9.89	7.85	51	6	0.179

	m_{ca} [kg/s]	UA_{eva} [kW/K]	$UA_{cond/abs} \ [\mathrm{kW/K}]$	UA_{rec} [kW/K]	UA_{DC} [kW/K]
ORC	3.765	6.01	4.81	-	4.56
rec. ORC	3.962	6.23	4.88	0.28	4.57
APC	0.907	6.18	6.22	0.02	4.51

	130 -						
٦٥	110 -						
atne	90 -		-/7				/
Temperature [°C]	70 -					nsing MN . R245fa	Λ
	50 -				R245f		
	30 -		10	20	20	40	
w -1 -		0	10	20 Heat tran	30 sfer [kW]	40	50

CASES – Combined Power and Cooling Cycle

Heat source: 80°C, 1 kg/s water (district heating parameters)

	W_c [kW]	W_{net} [kW]	Q _{chiller} [kW]	<i>COP</i> [-]	$\eta_{net} \ [\%]$	$T_{heat\ source\ out}$ [°C]	p _{c,low} [kPa]	m _{cw} [kg/s]
Cooling only	-0.001	-3.35	37.6	0.83	-	69.1	0.87	3.02
50% cooling, 50% power	1.60	-0.68	18.8	-	-	69.1	0.87	2.05
Power only	3.20	1.99	0	-	4.37	69.1	0.87	1.08
Power only, optim. abs. p	4.49	3.14	0	-	3.37	57.7	3.03	1.17

CONCLUSION & FUTURE WORK

- Low T applications potential of LiBr APC for significant performance increase
- Parasitic load plays a very important role suitable for zeotropic mixture fluids including LiBr APC
- Larger equipment in general
 - Suitable for efficient small turboexpander
 - Larger heat exchangers

CONCLUSION & FUTURE WORK

- Experimental verification of LiBr APC equipment
 - Investigation of phase change behaviour in counterflow desorber, separator, later absorber

- Demonstration LiBr APC unit
 - Including expander
 - Closer to real operation system but less possibilities for detailed phase change investigation

QUESTIONS?

Václav Novotný Vaclav.Novotny@cvut.cz

This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS OHK2 - 036/16 - Design and construction of an experimental rig for verification of function of advanced absorption power cycle components and by CTU UCEEB.