

Techno-Economic Analysis of Waste Heat Recovery with ORC from Fluctuating Heat Sources

Roberto Pili, M.Sc.

Christoph Wieland, Dr.-Ing. Hartmut Spliethoff, Prof. Dr.-Ing. Technical University of Munich Department of Mechanical Engineering Institute for Energy Systems

Alessandro Romagnoli, Prof. Asst. Nanyang Technological University of Singapore School of Mechanical & Aerospace Engineering College of Engineering

Uhrenturm der TVM

Milan, 13th September 2017

ТШП

Outline

- 1. Waste heat from Heavy Industry
- 2. Waste Heat Fluctuations
- 3. Modelling and Methods
- 4. Results
- 5. Summary and outlook

1. Waste heat from industrial processes

Definition: "Waste heat is thermal energy (or heat), which is not used for the primary purpose of converting the raw material into a product."

Industrial waste heat can amount up to 70% of the industrial demand of a country (Canada)

EU27: 2708 PJ/a (9.1-22.2% industrial consumption) Germany: 218-566 PJ/a (~12-30%)

Figure: Miro, 2015.

1. Waste heat from industrial processes

Definition: "Waste heat is thermal energy (or heat), which is not used for the primary purpose of converting the raw material into a product."

Figure: Hammond, 2014.

The available waste heat can be computed from:

 $\dot{Q} = \dot{m} c_p \left(T - T_{ref} \right)$

Most important sectors:

- Cement
- Steel
- Non-ferrous metal (aluminium)
- Glass
- Chemicals

1. Where does waste heat come from?

Rolling mill hot reheating furnace. Figure: De Freitas, 2014.

2. Heat source fluctuations

Cement industry

Fluctuating temperature Profile: Legmann, 2002.

Steel: hot rolling mill

Fluctuating mass flow rate

Steel: electric arc furnace

2. Design dilemma

For design → classical approach: fixed load point (classical nuclear plants for base-load) Relatively easy, design based on single point

If the system operates for long-time in off-design (common ICE for vehicles, wind)

A trade-off has to be found

Figure: Zhang, 2013

3. Proposed procedure

Main parts:

- Design
- Off-design
- Economics

3. Off-design of ORC systems

When the load drops, the components are not working any more in the optimal point.

Turboden curve from: Turboden, 2017.

3. Off-design of ORC systems

When the load drops, the components are not working any more in the optimal point

3. Techniques to convert fluctuations in temperature into fluctuations in mass flow rate

Temperature drops \rightarrow lower Carnot efficiency Additional components

But...

...better part-load

ТUП

3. Storage options

Institute for Energy Systems | 4th International Seminar on ORC Power Systems | Pili Roberto

3. Economic model

Based on Turton (-25%/+40%), already used in several publications for ORCs

Correlations for costs related to heat exchanger areas, turbine power, pump power, etc. Corrections for pressure and material

ТЛП

3. Important figures

Electricity produced:

$$E_k = \bar{P}_k \Delta t$$

CO₂-savings:

 $CO_2S = f E_k$ f = 535 tCO₂/kWh in Germany (source: Statista, 2016)

Levelized cost of electricity:

- interest rate i 4%

- number of cash flows N (10) LCOE

$$T = \frac{\sum_{k=1}^{N} \frac{C_k}{(1+i)^k} + C_0}{\sum_{k=1}^{N} \frac{E_k}{(1+i)^k}}$$

 No costs for fuel
Independent from electricity price!

4. Results – Cement clinker (cooling air)

Lowest LCOE: Latent heat buffer Highest CO₂-savings: Latent heat buffer

4. Results – Hot rolling mill

■LCOE SCO2-savings

Lowest LCOE: Design for minimum source mass flow rate (rest bypassed) Highest CO₂-savings: 75% CPD of source mass flow rate

Institute for Energy Systems | 4th International Seminar on ORC Power Systems | Pili Roberto

4. Results – Electric Arc Furnace

■LCOE SCO2-savings

Lowest LCOE: Latent heat buffer or direct evaporation (T50%M100%) Highest CO₂-savings: Latent heat buffer

Institute for Energy Systems | 4th International Seminar on ORC Power Systems | Pili Roberto

5. Summary

A **techno-economic** procedure for the design and analysis of ORCs subjected to **fluctuating heat sources** has been developed.

The model is based on **thermodynamic optimization** tools, investment **cost estimation** and correlation for ORC **off-design** behavior.

Different configurations with and without storage were analysed.

Temperature fluctuations affect **more** the performance of the ORC and cannot be easily bypassed.

No storage and **simple bypass** appears the most economic solution for fluctuating mass flow rate.

For fluctuating temperature, the **latent heat buffer** appeared a good solution both for the economic and the environmental perfomance of the waste heat recovery systems.

ТЛП

5. Future outlook

Analysis of additional profiles

More in-depth models of heat exchangers

Comparison of different working fluids in off-design

Development of dynamic models

Analysis of different control strategies

6. References

Brandt, 2014. Brandt, C, Schüler, N, Gaderer, M, Kuckelkorn, Jens M. Development of a thermal oil operated waste heat exchanger within the off-gas of an electric arc furnace at steel mills. Applied Thermal Engineering, 2014; 66(1-2). p. 335–345.

Dal Magro, 2015. Dal Magro F, et al. Enhancing energy recovery in the steel industry: Matching continuous charge with off-gas variability smoothing. *Energy Conversion and Management*, 104, 2015.

De Freitas, 2014. De Freitas Pereira Marques M W. Potential for ORC Application in the Portuguese Manufacturing Industry. Faculty of Science and Technology, New University of Lisbon, 2014.

Hammond, 2014. Hammond GP, Norman JB. Heat recovery opportunities in UK industry. Applied Energy, 116, 2014.

Legmann, 2002. Legmann H. Recovery of Industrial Heat in the Cement Industry by Means of the ORC-Process. Cement Industry Technical Conference, 2002.

Miro, 2015. Miro L,; Brückner, S; Cabeza L.F. Mapping and discussing Industrial Waste Heat (IWH) potential for different countries. *Renewable and Sustainable Energy Reviews*, 51, 2015.

Rettig, 2011. Rettig A, et al. Application of Organic Rankine Cycles (ORC). World Engineers' Convention (WEC), 4-9 Sept 2011, Geneva, Switzerland. Statista, 2016. Statista. Entwicklung des CO2-Emissionsfaktors für den Strommix in Deutschland in den Jahren 1990 bis 2015 (in Gramm pro Kilowattstunde). [English: Development of the CO2-Emission Factors for the Electricity Mix in Germany over the years from 1990 till 2015 (in Grams per Kilowatthour). [Online] Available: https://de.statista.com/statistik/daten/studie/38897/umfrage/co2-emissionsfaktor-fuer-den-strommix-in-deutschland-seit-1990/. Accessed on: Feb. 10 2017.

Turboden, 2017. Turboden Srl, part of: Mitsubishi Heavy Industries, Ltd. Organic Rankine Cycle Technology. [Online] Available: http://www.allenergy.co.uk/__novadocuments/228226?v=635943384058330000. Accessed on: Feb. 15 2017.

Zhang, 2013. Zhang HG; Wang EH; Fan BY. A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine. *Applied Energy*, 102, 2013.

Thank you very much for your attention.

Assumptions – Thermodynamic design

Quantity	Unit	Value	Quantity	Unit	Value
Min. heat source temperature	[°C]	150	Turbine efficiency	[%]	75
Pinch-point	[K]	10	Generator efficiency	[%]	97
Pump efficiency	[%]	70	Recuperator effectiveness*	[%]	80
Pump motor efficiency	[%]	85	Condensation temperature	[°C]	30

*When used (for water, set to zero)

Output: evaporation pressure and superheating at nominal point

TUTI

Design

Assumptions for heat storage

Storage	Heat source	Medium	Temperatures (°C)	Quantity (t)	ORC working fluid	Notes
	Clinker cooling air	Therminol VP-1	220/92.5*	159.07	Pentane	If source temp. < 230°C, source bypass
Two-tank	Flue gas HRF	Therminol VP-1	370/92.5*	17.87	Toluene	
	Flue gas EAF	HITEC®	400/225*	10.80	Toluene	If source temp. < 410°C, source bypass
Single tank	Clinker cooling air	Therminol VP-1	variable	1000	Pentane	
Latent heat	Clinker cooling air	LiNO ₃	254	70.44	MM	
buffer	Flue gas EAF	50wt-NaCl/50-wt MgCl ₂	450	9.96	Toluene	

(*temperature given as A/B: A: high temperature tank/B: low temperature tank)

Design data

Table A1. Thermodynamic optimization at design point (CC = Clinker Cooling, HRF = Hot Reheating Furnace, EAF = Electric Arc Furnace).

Case	Heat source temperature (°C)	Heat source mass flow rate (kg/s)	Working fluid	Turbine inlet temperature (°C)	Evaporation pressure (bar)	Condensation pressure (bar)	Electrical efficiency (%)	Net power output (kW)
CC 25%	237.1	53.9	Pentane	221.9	26.96	0.82	21.16	1017.9
CC 50%	254.8	53.9	MM	211.6	9.59	0.07	21.54	1246.7
CC 75%	277.1	53.9	MM	234.5	14.02	0.07	22.69	1598.6
CC Max	328.1	53.9	MM	259.6	15.51	0.07	23.49	2331.0
CC oil loop	220.0*	40.4*	Pentane	143.9	11.82	0.82	15.63	1554.0
CC Air inj.	220.0	82.5	Pentane	209.6	11.42	0.82	19.61	1156.1
CC latent	264.0	53.9	MM	219.6	10.90	0.07	21.91	1383.5
CC Two Tank	220.0*	23.1*	Pentane	210.0	11.83	0.82	15.81	898.9
CC Single Tank	214.1*	15.7*	Pentane	161.1	18.15	0.82	17.21	825.2

*Refer to heat source as oil/storage heat carrier

Design data

Table A1. Thermodynamic optimization at design point (CC = Clinker Cooling, HRF = Hot Reheating Furnace, EAF = Electric Arc Furnace).

Case	Heat source temperature (°C)	Heat source mass flow rate (kg/s)	Working fluid	Turbine inlet temperature (°C)	Evaporation pressure (bar)	Condensatio n pressure (bar)	Electrical efficiency (%)	Net power output (kW)
HRF Min	403.5	2.5	Toluene	328.0	33.01	0.05	29.37	260.8
HRF 25%	403.5	4.5	Toluene	328.0	33.01	0.05	29.37	367.6
HRF 50%	403.5	5.6	Toluene	328.0	33.01	0.05	29.37	436.8
HRF 75%	403.5	7.0	Toluene	328.0	33.01	0.05	29.37	541.8
HRF Max	403.5	9.5	Toluene	328.0	33.01	0.05	29.37	738.8
HRF Two Tank	370.0*	2.5*	Toluene	238.3	14.06	0.05	24.81	368.9

*Refer to heat source as oil/storage heat carrier

Design data

Table A1. Thermodynamic optimization at design point (CC = Clinker Cooling, HRF = Hot Reheating Furnace, EAF = Electric Arc Furnace).

Case	Oil hot temperature (°C)	Oil mass flow rate (kg/s)	Working fluid	Turbine inlet temperature (°C)	Evaporation pressure (bar)	Condensation pressure (bar)	Electrical efficiency (%)	Net power output (kW)
EAF 360/220 best	360	22.0	Toluene	344.9	13.54	0.05	24.77	826.2
EAF Two Tank	400	9.4	Toluene	352.7**	33.01	0.05	29.99	772.7
EAF Latent 230	460.0	22.3	Toluene	353.1**	33.00	0.05	30.37	1646.1
EAF Latent 150	460.0	22.3	Toluene	345.9	33.01	0.05	30.10	2177.4
EAF Air 230	450.0	37.8	Toluene	344.9	33.01	0.05	29.77	3531.2
EAF Air 150	450.0	37.8	Toluene	351.5**	33.00	0.05	30.02	2632.1

**Higher than the limit of 350° C, because of small tolerances in the code (error within 1%).

Economic assumptions

Interest rate i = 4%Indirect and direct costs \rightarrow 18% more forNumber of years = 10contingency and feesLoad hours 7000 h/y (EAF), 8000 h/y (cement, HRF)

Heat exchanger	Туре	Mater	ial	U (W/m²K)
Heat source/oil	U-tube	CS		80
Oil/evaporator	U-tube	CS		600
Heat source/evaporator	U-tube	CS		80
Recuperator	U-tube	CS		200
Condenser	Air cooler	CS		80
Component	Туре		Material	
Pump	Centrifugal pump		CS	
Turbine	Axial gas turbine		CS	
Compressor	Centrifugal fan		CS	
Tank	API – fixed roof		CS (Process v	essel)

Economic assumptions

Material	Туре	Unit	Cost	Quantity	Туре	Unit	Cost
Therminol VP-1	Sensible	[€/kg]	1.60	LiNO ₃	Latent	[€/kg]	8.00
HITEC® Heat Transfer Salt	Sensible	[€/kg]	0.74	50wt-NaCl / 50-wt MgCl ₂	Latent	[€/kg]	0.14

Pipe: 92.22 €/m USD/EUR = 1.25

Investment Cement

Investment Rolling mill

Investment EAF

EAF oil loop temperature: 360/220°C-340/150°C

