

Influence of the pinch-point-temperature difference on the *Preheat-parallel* CHP configuration

Sarah Van Erdeweghe – KU Leuven/EnergyVille

ORC, Milan, September 13th, 2017

Problem statement – geothermal power plant

Electricity from deep-geothermal energy

- Renewable & sustainable
- Constant power output, independent
 of the weather conditions
 - ➔ baseload
 - ⇔ PV/wind

Problem statement – feasibility?

Geothermal conditions NW Europe (Belgium)

- Thermal gradient: 30°C/km
- ✤ Low brine temperature: T=130°C
- High drilling costs
 - >50% of total costs

Pure electrical power plant not economically feasible

→Improve plant economics via CHP

→ Potential of *Preheat-parallel* CHP layout

Preheat-parallel CHP configuration

Combination of series and parallel CHP layouts

Preheating-effect

Goals

Preheat-parallel CHP plant performance

- **Set of pinch-point-temperature difference**
- Preheat-parallel versus series and parallel CHPs
- Maximization of net electrical power output

$$\dot{W}_{net} = \dot{W}_t \eta_g - \frac{\dot{W}_p}{\eta_m} - \dot{W}_{wells}, \qquad \dot{W}_{wells} = 600kW$$
Comparison based on exergetic plant efficiency
$$\eta_{ex} = \frac{\dot{W}_{net} + \dot{E}x_{DH}}{\dot{E}x_{b,prod}}$$

Model implementation: Python + CasADi/IpOpt + REFPROP

24/09/2017

Preheat-parallel: Performance

\mathbf{N}75/50 DH system, $\dot{Q}_{DH} = 6$ MWth

$$\begin{split} \dot{W}_{net} &= \dot{W}_t \eta_g - \frac{\dot{W}_p}{\eta_m} - \dot{W}_{wells} = 5.14 MWe\\ \eta_{ex} &= \frac{\dot{W}_{net} + \dot{Ex}_{DH}}{\dot{Ex}_{b,prod}} = \underline{38.31\%} \end{split}$$

 \Leftrightarrow Pure power plant: $\dot{W}_{net} = 5.58 MWe \& \eta_{ex} = 35.73\%$

Preheat-parallel: Influence of ΔT_{pinch} on performance

\sim75/50 DH system, $\dot{Q}_{DH} = 6$ MWth

Preheat-parallel: Influence of ΔT_{pinch} on operating conditions

 \sim 75/50 DH system, $\dot{Q}_{DH} = 6$ MWth

24/09/2017

Preheat-parallel: Influence of ΔT_{pinch} on operating conditions

~75/50 DH system, $\dot{Q}_{DH} = 6$ MWth

Preheat-parallel: Influence of the heat demand

75/50 DH system

For \dot{Q}_{DH} \uparrow , the preheating-effect \uparrow but $\dot{W}_{net} \downarrow$

Preheat-parallel: Influence of the return temperature

 \sim 75/50 and 75/35 DH system, $\dot{Q}_{DH} = 6$ MWth

For $\mathsf{T}_{\mathsf{return}}\downarrow$, $\dot{W}_{net}\uparrow$ and preheating-effect \uparrow

24/09/2017

Preheat-parallel versus series

Preheat-parallel CHP

- + Higher \dot{W}_{net} and η_{ex} than series CHP
- + Less sensitive to $\dot{W}_{net} \downarrow$ with ΔT_{pinch}
- **+** Highest gains for low \dot{Q}_{DH} and low T_{return}

Preheat-parallel versus parallel

Preheat-parallel CHP

- + Higher W_{net} and η_{ex} than parallel CHP
- ↑ More/equally sensitive to $W_{net} \downarrow$ with ΔT_{pinch}
- + Highest gains for high \dot{Q}_{DH} and low T_{return}

Preheat-parallel versus series and parallel CHPs

The preheat-parallel CHP has

+ Higher \dot{W}_{net} and η_{ex} for investigated conditions

Brine: 130°C & 194kg/s & DH system: 75/50 and 75/35

Higher gains for low T_{return}

Highest sensitivity towards variations in ΔT_{pinch}

Series > Preheat-parallel > Parallel

Versus series A Highest gain for **low** \dot{Q}_{DH} Versus parallel Highest gain for high \dot{Q}_{DH}

Conclusions – *Preheat-parallel* CHP

NPerformance

+ 75/50 DH system & \dot{Q}_{DH} = 6MWth → \dot{W}_{net} = 5.14MWe & η_{ex} = 38.31% \Rightarrow pure power plant $\eta_{ex} = 35.73\%$ **→** better utilization of low-T geoth. source!

\frown Effect of ΔT_{pinch} on

- + Performance: \dot{W}_{net} ↓ and η_{ex} ↓ with ΔT_{pinch}
- Optimal operating conditions
- Preheat-parallel favorable when
 - A Large T_{supply} − T_{return}, Low T_{return}
 A Higher \dot{Q}_{DH} Preheating-effect

Preheat-parallel better than series and parallel CHP (for considered conditions) 24/09/2017

Influence of the pinch-point-temperature difference on the *Preheat-parallel* CHP configuration

Sarah Van Erdeweghe – KU Leuven/EnergyVille

sarah.vanerdeweghe@kuleuven.be