

Advancements in experiments on non-ideal compressible flows for ORC applications

Andrea Spinelli

POLITECNICO MILANO 1863

Experiments in NICFD for ORCs

Non-ideal compressible flows of organic vapors

- Compressible M > 0.3 but typically higer $\rightarrow M \approx 2$
- $Pv \neq RT$ proximity to saturation curve and critical point
- TMD state relatively high T & moderate P
- \rightarrow Typical blade passages flows of ORC **turboexpanders**

CREALab

Experiments for ORCs

Title-Abs-Key

Experimental & Organic & Rankine & Cycle

CREALab

Experiments for ORC Turbine

Title-Abs-Key

Experimental & Organic & Rankine & Cycle

& Turbine

CREALab

Experiments for ORC Turbine

Title-Abs-Key

Experimental & Organic & Rankine & Cycle

& Turbine

Discussion

CREALab

Challenges in experiments for ORCs

- \rightarrow Design experiments
- → Manage facilities/measuring techniques
- → Perform test/understand results

CREA Lab experience

- Issues/solutions trials/errors failures /successes open problems
 - o some peculiar of expander flow experiments
 - some shared with test of other ORC components
 - \rightarrow worth to share aspects of experimentation
- → Best solutions? Comprehensive options? Exhaustive findings?

NO! \rightarrow Applied methodology for experiments in ORCs

Summary

- Need of experiments
- Provide experimental data
- Challenges in ORCs
- Experimental apparatuses: options & management
- Measuring techniques: peculiarities in ORC flows
- Some achievements
- \circ $\,$ Conclusions and outlook $\,$

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Flow features

Complex flows in ORC turbine passages

- High compressibility $\downarrow c \uparrow M$
- High non-ideal effects

Proper flow modeling

Not straightforward

CREALab

 \circ Crucial \rightarrow $\eta_{turbine}$ \rightarrow η_{cycle}

- being 'the expander the key component of ORCs' ⁽¹⁾
- and *'improvement of the expander fluid-dynamic performance directly* affects the power output [...] often without affecting the unit cost' ⁽

1 Macchi E., Astolfi M. Organic Rankine Cycle (ORC) power systems. New York Woodhead , Elsevier, 20172 Colonna P. et al.ORC power systems: Concept, current technology, applications, outlook. ASME JGTP, 2015

Detailed flow modeling

Demand for detailed experiments

- Design tools demand for accurate data
- CFD codes + TMD models verification
- Tool refinement \rightarrow reliability

Provide experimental data

- What to measure
- At which points
- In which test section/device
- Reaching mesuring points
- With proper instrumentation

Advancements in experiments on compressible flows for ORCs – Andrea Spinelli

Provide experimental data

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Properties of significance

Turbine passage flow characterized by

- $\circ P_T, T_T = \Delta P_T, \Delta T_T \rightarrow \text{losses, work}$
- \circ **V** 3D (V, α, ψ) → work, KE losses, incidence/deviation
- P, M boundary condition & compressibility
- \rightarrow Related by fluid EoS

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

8

Measuring domain

Within blade channels

- ✓ Wall taps/Schlieren/LDV (PIV)
 - \rightarrow blade *P*, $\nabla \rho$, *V*

CREALab

- \rightarrow NO aerodynamic calibration
- \bigstar Intrusive probes P_T , T_T , P, V

Best possible space resolution

Upstream/downstream rows

- ✓ Add Intrusive probes P_T , T_T , P, V
- **★** Aerodyn. calibration required

Device & Test section

Industrial ORC modules – field operating

- Medium/large size \cap
- Customized accesses \rightarrow Ο
- probes upstream/downstream stages
 - traversing: blade span \rightarrow
 - NO optical windows \rightarrow
- Limited availability \rightarrow plant operator Ο
- Operating conditions \rightarrow dictated by \dot{W} , \dot{Q} Ο

Limited investigation

- Relatively low M Ο
- NO tangential span traversing Ο
- Aero-calibrated probes NOT AVAILABLE Ο nulling mode $\rightarrow P_T$, T_T , α for \sim 2D flows

Industrial ORC modules

n radial time-averaged distribution of P_T , T_T , α where ~ 2D flow

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Linear cascade test section

• Easy access

- → probes upstream/downstream blades
- → traversing: blade span & tangential
- \rightarrow blade/endwall taps
- \rightarrow optical windows

Limitations

- High cost to attain detailed mapping
- Aero-calibrated probes NOT AVAILABLE
- Suitable for axial machine
- \rightarrow Good results achievable for \sim 2D flows

Achievable for \sim 2D flows

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

13

Nozzle based tunnels

Nozzles

CREALab

- Simplest geometry expanding the flow
- \circ $\,$ Small dimensions allow detailed investigation \rightarrow limited \dot{m}

Enable the study of turbine-like phenomena

- Isentropic expansion processes
- Shock waves & expansion fans (wind tunnel mode)

Nozzle test sections

Easy access – Planar nozzle

- \circ Probes upstream P_T, T_T
- Wall taps P
- Optical windows $V, M, \nabla \rho$
- Object/probe insertion

Advantages

- Large isentropic core flow
- Aero-calibrated probes NOT required
- Possible reference flow for calibration

Limitations

- Absence of blade row flow features
 → semi-bladed channel
 - \rightarrow secondary flows, deviation

Existing facilities for detailed flow studies

Reserch facilities for detailed study of ORC expanding flows						
Facility	Institution	Cycle	Operation	Test section	Year of publ.	
TROVA	PoliMi	Rankine	Batch	Nozzle	2010	
CLOWT	Muenster U	Gas	Continuous	Nozzle/Cascade	2015	
Whittle LT	Cambridge U	-	Batch	Nozzle	2016	
ORCHID	TU Delft	Rankine	Continuous	Nozzle	2016	

All facilities can operate with diverse organic fluids

Nozzle flow experiments is the preferred choice

CREALab

 \rightarrow Paradigm of early 1900s exp. on gasdynamic foundations

Nozzle based experiments

Meyer nozzle experiment		Nozzle experiment @ CREA Lab		
WF	Air	WF	Octamethyltrisiloxane – MDM	
Year	1908	Year	2016	
Z_{inlet}	= 1	Z_{inlet}	= 0.65	
		0		
- State State	ICFD	0	NICFD	

Conventional fluid machines

ORC turboexpanders

Nozzle based experiments

conventional fluid machines

ORC turboexpanders

CREALab

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Challenges in experiments for ORCs

Design of experiments/interpretation of results

- Modeling thermo-physical properties of WFs
- Theoretical understanding non-ideal flow behavior
- Simulating non-ideal flows + UQ

Perform the experiments in ORC environment

- Conceive/design/implement experimental apparatuses
- Manage test rigs

CREALab

Select/adapt/renew measuring techniques

Thermo-physical properties of WFs

Experiments & modeling

- Thermodynamic properties LVE/PVT/Critical Point
- Pure fluids and mixtures
- o Thermal stability limit
- Transport properties

Advancements in experiments on compressible flows for ORCs – Andrea Spinelli

Non-ideal flow behavior

Theoretical effort

CREALab

- Quasi-1D theory + simple TMD model (e.g. vdW)
- Analytical solution & identification of flow regimes
- Non-ideal/Non-conventional/Non-classical

Non-ideal flow simulations

NICFD solvers

- Coupling with accurate thermodynamic models
- Grid adaptation
- Implementing uncertainty quantification (UQ)
- Code validation

Experimental challenges in ORC environment 22

- High T, up to 400 °C
- Vapor desirous to condense
- o Fluid not releasable to atm
- \circ Possible low P_{cond}
- Toxic/flammable fluids
- Fluid can decompose

- \rightarrow materials & sealing
- \rightarrow complementary heating, purging
- \rightarrow closed loops & sealing
- \rightarrow sealing
- \rightarrow ventilation, atex devices
- $\rightarrow T_{limit}$ information, avoid contamination

Thermal stability experiments

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

💿 Experimental apparatuses

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Thermodynamic cycles – Continuous

Given $OP_{des} \& A_{th}$ 400 GAS CYCLE 350 6 h=const. () 300 250 200 2 0.8 0.6 0.4s (kJ/(kg K))✓ Low Ż **X** High $\dot{W}_{compression}$ (\downarrow diffuser) **×** Compressor complexity imes Low operation flexibility ★ Heating system required

X Liquid phase not available

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Operational mode

CREALab

Plant construction

Few considerations

- Size Dictated by WF, TMD region, measurement resolution
- Materials
 Carbon steel vs stainless steel
- Control system
 PC based
 - WF flexibility Relatively easy to reach (phase transition cycles)
 - ATEX may be required

Safety valves + bursting disks

CLOWT @ Muenster Univ

ORCHID @ P&P TUDelf

Ο

Ο

Safety

Nozzle design

Profile design

- o Divergent
- o Convergent
- o **Throat**

CREALab

o Roughness

MOC – good approach, proven by experiments smooth transition to throat of y'' (CFD verification) no singularities for low curvature (recommended) enhanced for direct M measurements

The TROVA @ CREA Lab

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Plant management

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Issues – Sealing

Pressure & vacuum/low & high T

o Joints

threads ... are threat valve stem packing

- o Gasket type
- High T materials
 & compatibility

planar o-rings steel, copper graphyte for o-rings

- \rightarrow regular surfaces & strong tightening
- → weak tightening, vacuum grooves
 - \rightarrow not for optical windows
 - \rightarrow not for o-rings
 - → FKM, silicone (210 °C) PTFE (300 °C) NO spring back FFKM (310 °C) high cost

Issues – Vacuum

Vacuum system

- Vacuum keeping
- o Evacuation
- Minimum P
- Avoid air intake
- Vacuum pump

CREALab

size dependent

at each start & during operation

 $P_{sat} @ T_{amb}$ – plant stop WF contamination O₂, H₂O inert gases at plant stop cold traps recommended frequent oil inspection

Issues – Vacuum

Vacuum system

- Vacuum keeping
- o Evacuation
- Minimum P
- Avoid air intake
- Vacuum pump

size dependent

at each start & during operation

 $P_{sat} @ T_{amb}$ – plant stop WF contamination O₂, H₂O inert gases at plant stop cold traps recommended frequent oil inspection

Advancements in experiments on compressible flows for ORCs – Andrea Spinelli

Issues - Condensation

Undesired condensation

- Additional heating Ο
- mandatory up to the test section
- \rightarrow optical measurements
- \rightarrow avoid liquid blockage & nozzle reshape

CAMERA

CREALab

Issues - Cleanliness

Solid particles/liquids/greases

- Residuals construction/assembling/commissioning
- Purposely inserted seeding particles (LDV/PIV)
- Generated
 fluid decomposition (even limited)

Consequences

CREALab

- Damaging
- Test section soiling

coarse particles & high T/high sealing valves optical access hindered (also nm particles)

Issues - Cleanliness

Solid particles/liquids/greases

- Residuals construction/assembling/commissioning
- Purposely inserted seeding particles (LDV/PIV)
 - Generated fluid decomposition (even limited)

Consequences

• Damaging

 \cap

• Test section soiling

- coarse particles & high T/high sealing valves optical access hindered (also nm particles)
 - → Enhance vacuum sealing
 - \rightarrow Fluid degassing
 - \rightarrow Cleaning + filtration
 - → Post-exp WF analysis

Measuring techniques

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Pressure – P, P_T

Sensor requirements

- High accuracy
 to catch non-ideal effects
- Fluid compatibility
- Possibly high $f_{n,sensor}$ appreciated also for steady flow

Mounting	T OP	T variation	Miniaturization	Condensation	f response
Local/Flush	$\sim T$ vapor	Variable	Required	No	High
Remote	$\sim T$ room	\sim Constant	Not required	Yes	Low

Pressure sensors

Candidate sensor type

• Piezoresistive

- local/remote mounting
- Capacitive remote mounting

Piezoresistive transducers

U	Maximum <i>T</i>	f _{n,sensor}	<i>T</i>	Fluid
(% FS)	(°C)	(kHz)	sensitivity	compatibility
~ 0.1	500	250 ÷ 1000	Yes	

Calibration

Static calibration

○ *T* compensation for local mounting $\rightarrow P \& T$ calibration

Dynamic response estimation

Line cavity system

$$\circ \quad f_n \propto c d (Vl)^{-1/2} , \ f_r = f_n \sqrt{1-\zeta^2}$$

f_r , d = 2 mm	<i>l</i> = 10 mm	<i>l</i> = 100 mm	<i>l</i> = 1000 mm
MDM vapor	300 Hz	120 Hz	20 Hz
N ₂	1000 Hz	400 Hz	70 Hz
P(t)	ne <i>l, d</i>	sensing element V cavity	sensor

Issues

Condensation in lines

Liquid heads MUST be avoided

10 mm MDM ≈ 0.8 mbar → horizontal lines/purging → local mounting

~ negligible for low σ fluids

 \circ Laplace-Young ΔP

CREALab

Fluid	ϑ (°)	σ (N/m)	<i>d</i> (mm)	ΔP (mbar)
MDM	0÷10	0.015	2	0.3

◦ Liquid ejection ($P \downarrow$ /line purging) → possible optical disturbance

Temperature $-T_T$

Sensors

o RTDs

CREALab

- Thermocouples
- Dynamic response
- Fluid compatibility

Thermocouples

- Time constant
 - → miniaturization recommended
 - \rightarrow exposed junction preferred

TC	U (°C)	<i>d</i> (mm)	Junction	$ au_{est}$ (s)
J	1.2	0.70	exposed	1.30
K	1.0	0.25	sheathed	0.25
К	0.6	0.10	exposed	0.12

high accuracy & low f response \rightarrow steady flows good accuracy & higher f response \rightarrow transient well below P sensors good

Schlieren – $\nabla \rho$

Configurations

Single passage

CREALab

- ★ 2 optical access NO plate
- \mathbf{X} lower sensitivity
- \checkmark no mirror polished surface
- \checkmark reduced meas. range issue

Double passage

- ✓ 1 optical access+plate easy align.
- ✓ higher sensitivity
- ✗ mirror polished surface
- ★ increased meas. range issue

Issues – Measuring range

CREALab

Gladstone-Dale

 $\frac{\partial n}{\partial x} = K \frac{1}{c^2} P_T \frac{\partial (P/P_T)}{\partial x}$ Ray path $\frac{K_{MDM}}{K_{air}} \approx 2 \text{ and } \frac{c_{air}^2}{c_{MDM}^2} \approx 10$ Rear Plate (pt 3) Glassint (pts 2,4) -0.5 $\rightarrow \quad \varepsilon_{x,MDM} \gg \varepsilon_{x,air}$ Glass (pts 1,5) L1 (pt6) [m]z -1.5 Knife Frame (pt 8) Knife frame -2.5 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 x[m]

Issues – Measuring range

Influence of P_T and c for organic vapor

$$\frac{\partial n}{\partial x} = K \frac{1}{c^2} P_T \frac{\partial (P/P_T)}{\partial x}$$

Solutions

CREALab

Remove all unnecessary obstacles

• Proper selection/arrangement

Direct V measurement

Key for TMD model verification

- ✓ No calibration required
- \bigstar Challenging flow seeding \rightarrow proper particle

 \rightarrow seeding system

Seeding strategy & particles

Solid particles

CREALab

 Spray of liquid WF/particle suspension upstream of the test section

\rightarrow still open problem

Test	T	iO ₂	SiO ₂				
	$d_p=1\mu\text{m}$	$d_p=0.5\mu\text{m}$	$d_p=1\mu m$	$d_p=0.5\mu\text{m}$			
MDM_2	5.57%	2.35%	4.06	1.61%			
MDM_{1st}	3.86%	1.36%	2.70	0.90%			
Maximum clin factor							

Maximum slip factor

Some achievements

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Non-ideal nozzle expansion -P/PT

Significant non ideal effects $Z_T \approx 0.80$ difference to PG @ throat -6% on P/PT, -20% on ρ , +16% on V

Advancements in experiments on compressible flows for ORCs – Andrea Spinelli

5

0

y/H

41

M2.0 nozzle

•

CFD Comparison

41

Advancements in experiments on compressible flows for ORCs – Andrea Spinelli

Mach number measurement

Through Mach waves detection

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

42

Supersonic airfoil

Appreciable non-ideal effects

- In shock/expansion patterns
- Good Exp./CFD agreement for accurate TMD models

CREALab

43

Backward facing step

Typical flow pattern at blade TE

- \circ Large abla
 ho due to high compressibility
- Fan/separation/shock structures
- \circ $\,$ Well captured by SU2 through grid adaptation $\,$

 $\Delta \Delta$

Thermal stability

CREALab

45

Vapor [µmol]

0.948

Component

Methane

Tests on pure & binary mixtures

- Linear siloxanes: MM, MDM, MD_2M , MD_3M
- $\circ \forall T_{stress}$: cycles of P_{sat} /80h thermal stress/ P_{sat}
- Chemical analysis of liquid & vapor fractions

E Conclusions & Outlook

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Conclusions

- Key to refine design tools
- o Entail diverse challenges
- Overcome some of them
- Encouraging experimental work

Outlook

- Perform direct velocity measurements
- Design & aerodynamically calibrate probes (sensor embedded FRAPP)
- Test actual turbine blade shapes
- Assess the potentiali of thermal stability of mixtures (already ongoing)

- \rightarrow turbine & cycle performances
- \rightarrow exp. activity & fluid/flow modeling
- \rightarrow highly rewarding results
- \rightarrow feel free to fail & share

Acknowledgements

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Support

2008 - 2010

Since 2013

European Research Council

Established by the European Commission

Consolidator Grant 2013, Prof. A. Guardone Project NSHOCK

People

Advancements in experiments on compressible flows for ORCs – Andrea Spinelli

People

Prof. Mario Gaia

Prof. Carlo Osnaghi

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Thank you for your attention

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Information

References

• Available soon with the presentation at:

crealab.polimi.it

Laboratory tour available also this morning. Ask the help desk.

Advancements in experiments on compressible flows for ORCs – Andrea Spinelli

Actual ORCs for research needs

- Medium/large plant size Ο
- Access design probes upstream/downstream **blade rows** \rightarrow Ο
 - traversing: blade span, possible tangential \rightarrow
 - possible optical windows \rightarrow
- Full availability & flexible operating conditions Ο

Limitations

- VFRY HIGH COST!!!
- Aero-calibrated probes NOT AVAILABLE \cap
- \rightarrow Size reduction
- Limits for detailed flow mapping 0
- Good for global measurements Ο

CREALab

Recent ORC modules for turbine research ⁽³⁾									
Module	Institution	Expander	Ŵ _{out} (kW)	Working fluids	Year of publ.				
KIER ORC Loop	KIER	Rad-IN-T	~ 35	R245fa	2011				
Jiaotong ORC Loop	Xi'an Jiaotong U	Ax-T	~ 10	R123	2012				
ORC Test Bench	LU Hannover	Ax-T	~ 20	Ethanol	2015				
High Pressure Loop	U Queensland	Rad-IN-T	~ 20	HFC-HC-CO ₂ (R245fa)	2016				
ICE WHR Loop	Lappeenranta UT	Rad-IN-T	~ 15	MDM	2016				
ORCHID	TU Delft	Diverse (R-IN-T)	up to 100	Diverse (MM)	2016				
Liège ORC Loop	U Liège	Rad-IN-T	~ 3.5	R245fa, R1233zd	2017				

3) Research modules in the mini/small power range, suitable for research on turboexpanders

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

pea) #	k R.T. min	Start min	End min	PK TY	peak height	peak area	peak % max.	% of total
1	2.378	2.325	2.530	BB	2818	44002	0.03%	0.032%
2	3.833	3.724	3.889	BB	2082	41479	0.03%	0.030%
3	6.822	6.745	6.917	BB	466	12563	0.01%	0.009%
4	7.792	7.704	7.875	BB	125	3720	0.00%	0.003%
5	10.433	9.895	11.091	BB	1029722	138072172	100.00%	99.862%
6	14.133	13.985	14.188	PB	51	7922	0.01%	0.006%
7	16.418	16.318	16.491	BB	987	23462	0.02%	0.017%
8	21.608	21.525	21.665	вv	376	8866	0.01%	0.006%
9	26.048	25.951	26.118	BB	169	4295	0.00%	0.003%
10	29.513	29.421	29.558	BB	115	2179	0.00%	0.002%
11	39.531	39.468	39.725	BB	2045	42738	0.03%	0.031%
12	39.971	39.868	40.021	BB	176	-112	-0.00%	-0.000%
			Sum	of c	orrected	areas:	13826328	6
peal	C R.T.	Start	Enđ	PK	peak	peak	peak	% of
#	min	min	min	ΤY	height	area	% max.	total
1	2.383	2.329	2.541	BB	3069	46471	0.04%	0.035%
2	2.679	2.608	2.751	BB	537	7776	0.01%	0.006%
3	3.225	3.168	3.283	BB	203	2910	0.00%	0.002%
4	3.837	3.736	3.906	BB	5274	94412	0.07%	0.072%
5	6.823	6.743	6.923	BB	746	18850	0.01%	0.014%
6	7.794	7.691	7.876	BB	859	24129	0.02%	0.018%
7	8.519	8.408	8.626	BB	844	27775	0.02%	0.021%
8	10.428	9.828	11.028	BB	996802	131480512	100.00%	99.638%
9	11.390	11.298	11.478	BB	384	9406	0.01%	0.007%
10	12.706	12.632	12.802	BB	133	3623	0.00%	0.003%
11	13.139	13.062	13.205	BB	121	3035	0.00%	0.002%
12	13.527	13.442	13.638	BB	1345	32108	0.02%	0.024%

Advancements in experiments on compressible flows for ORCs – Andrea Spinelli

peak #	R.T. min	Start min	Enđ min	PK TY	peak height	peak area	peak % max.	% of total
1	2.383	2.329	2.541	BB	3069	46471	0.04%	0.035%
2	2.679	2.608	2.751	BB	537	7776	0.01%	0.006%
3	3.225	3.168	3.283	BB	203	2910	0.00%	0.002%
4	3.837	3.736	3.906	BB	5274	94412	0.07%	0.072%
5	6.823	6.743	6.923	BB	746	18850	0.01%	0.014%
6	7.794	7.691	7.876	BB	859	24129	0.02%	0.018%
7	8.519	8.408	8.626	BB	844	27775	0.02%	0.021%
8	10.428	9.828	11.028	BB	996802	131480512	100.00%	99.638%
9	11.390	11.298	11.478	BB	384	9406	0.01%	0.007%
10	12.706	12.632	12.802	BB	133	3623	0.00%	0.003%
11	13.139	13.062	13.205	BB	121	3035	0.00%	0.002%
12	13.527	13.442	13.638	BB	1345	32108	0.02%	0.024%
13	13.809	13.725	13.885	BB	362	8480	0.01%	0.006%
14	14.131	14.048	14.205	BB	215	5224	0.00%	0.004%
15	14.465	14.368	14.565	BB	135	4005	0.00%	0.003%
16	14.831	14.745	14.888	вV	299	7031	0.01%	0.005%
17	15.817	15.735	15.865	BB	152	3546	0.00%	0.003%
18	16.420	16.262	16.515	BB	3956	93564	0.07%	0.071%
19	17.466	17.378	17.525	BB	223	5305	0.00%	0.004%
20	18.989	18.918	19.065	BB	149	4064	0.00%	0.003%
21	19.953	19.868	19.993	BV	178	4357	0.00%	0.003%
22	20.082	20.040	20.162	VB	305	8251	0.01%	0.006%
23	21.090	20.912	21.148	BV	396	9977	0.01%	0.008%
24	21.608	21.505	21.698	BB	1041	25228	0.02%	0.019%
25	24.612	24.562	24.712	BB	111	3838	0.00%	0.003%
26	25.572	25.468	25.655	вv	325	10041	0.01%	0.008%
27	26.049	25.995	26.122	BB	334	8459	0.01%	0.006%
28	29.514	29.432	29.582	BB	164	3283	0.00%	0.002%
29	41.823	41.742	41.877	BV	113	3191	0.00%	0.002%
			Sum	of c	orrected	areas:	131958852	2

Advancements in experiments on compressible flows for ORCs – Andrea Spinelli
Resolution

Space

• As high as possible

Time

CREALab

- Fixed blade
- Rotating blades

- → detailed measurements
- → capture flow gradients
- → steady/slow transient
- \rightarrow average
- \rightarrow time resolved $f_{blade \ pass} \sim 10^{\circ} \div 10^{\circ} \text{ kHz}$
- \rightarrow dynamic calibration & vane field REQUIRED

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Pressure sensors

Our choice

CREALab

- Piezoresistive + local mounting
 - \rightarrow nozzle based experiments

O Capacitive + remote mounting
→ thermal stability tests

Advancements in experiments on compressible flows for ORCs - Andrea Spinelli

Issues – Miscellaneous

Cavitation

CREALab

 \circ \dot{V} reduction

- \rightarrow pump intake cooling
- \rightarrow reduce installation height
- → pressurize condenser (batch cycles only)
- Side level meters
- \rightarrow useless

Calibration

Static calibration in *P* & *T*

• Compensation resistor **R**

Dynamic response estimation

CREALab

Advancements in experiments on compressible flows for ORCs – Andrea Spinelli

CREALab