

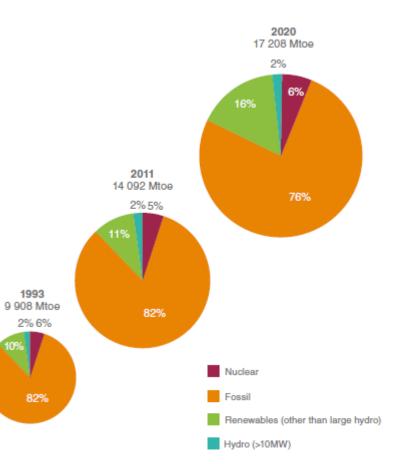
DEVELOPMENT OF A DIRECT CONCEPT HELICAL-COIL EVAPORATOR FOR AN ORC BASED MICRO-CHP SYSTEM

João S. Pereira ^{a*}, José B. Ribeiro ^a, Ricardo Mendes ^a, Gilberto C. Vaz ^{a,b}, Jorge C. André ^a.

* PhD student in Sustainable Energy System at MIT Portugal Program in University of Coimbra.

ENERGIA PARA A SUSTENT ENERGY FOR SUSTAINABILIT

^a ADAI-LAETA, Department of Mechanical Engineering, University of Coimbra, Pólo II, 3030 Coimbra, Portugal.


^b Instituto Politécnico de Coimbra – Instituto Superior de Engenharia de Coimbra, 3030 Coimbra, Portugal.

UNIVERSIDADE DE COIMBRA

MOTIVATION

Total Primary Energy Supply by resource

Population [billion] 5.5 7 Gross domestic product [trillion USD] 25 70 Total primary energy demand [Mtoe^{*}] 9 5 3 2 14 092 17 208 Coal [Mt^{*}] 4 4 7 4 7 520 10 108 Oil [Mt^{*}] 3 179 3 973 Natural gas [bcm^{*}] 2 176 3 5 1 8 Nuclear [TWh*] 2 106 2 386

Reference: World Energy Council, World Energy Resources - 2013 Survey. 2013

Hydro power [TWh^{*}]

Biomass [Mtoe [*]]	1 036	1 277	1 323	23%
Other renewables [TWh*]	44	515	1 999	1170%
Electricity production/year				
Total [TWh [*]]	12 607	22 202	23 000	76%
Per capita [MWh*]	2	3	3	52%
CO2 emissions/year				
Total CO ₂ [Gt [*]]	21	30	42	44%
Per capita [tonne CO ₂]	4	4	n/a	11%

1993

2 286

2011

2 767

2020

8.1

65

4 594

4 0 4 9

3 761

3 826

% growth

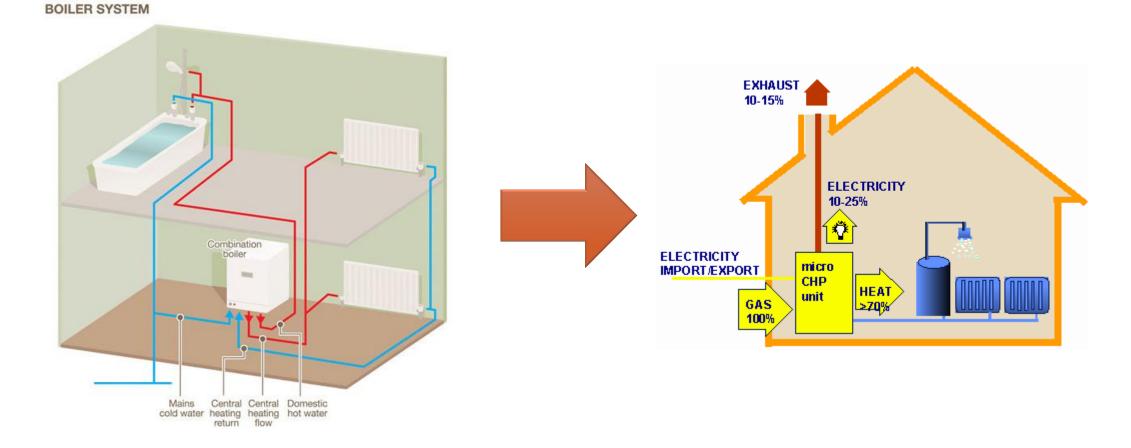
(1993-2011)

27%

180%

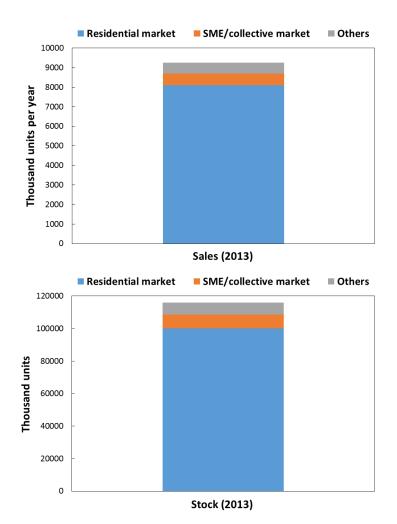
48%

68%


25% 62%

13%

21%


* Mtoe Million tonnes of oil equivalent; Mt Mega tonne; Gt Giga tonne; bcm Billion of cubic meters; TWh Tera Watt hour; MWh Mega Watt hour;

HEBE PROJECT

COMBINATION

HEBE POTENTIAL IN THE EU-27

Residential systems $(\pm 1 \text{ kW}_e)^*$ SME and Collective systems $(\pm 40 \text{ kW}_e)^{**}$

Reference: CODE 2 - Cogeneration Observatory and Dissemination Europe. Micro-CHP potential analysis - European level report. 2014

Expected sales:	in 2020: 52 000 units/year; in 2030: 2 900 000 units/year;	Expected sales:	in 2020: 2 700 units/year; in 2030: 68 000 units/year;		
Expected stock:	in 2020: 103 000 units; in 2030: 14 400 000 units; in 2040: 30 500 000 units;	Expected stock:	in 2020: 18 000 units; in 2030: 290 000 units; in 2040: 950 000 units;		
Potential primary energy savings in 2030:					

300 000 TJ***/year;

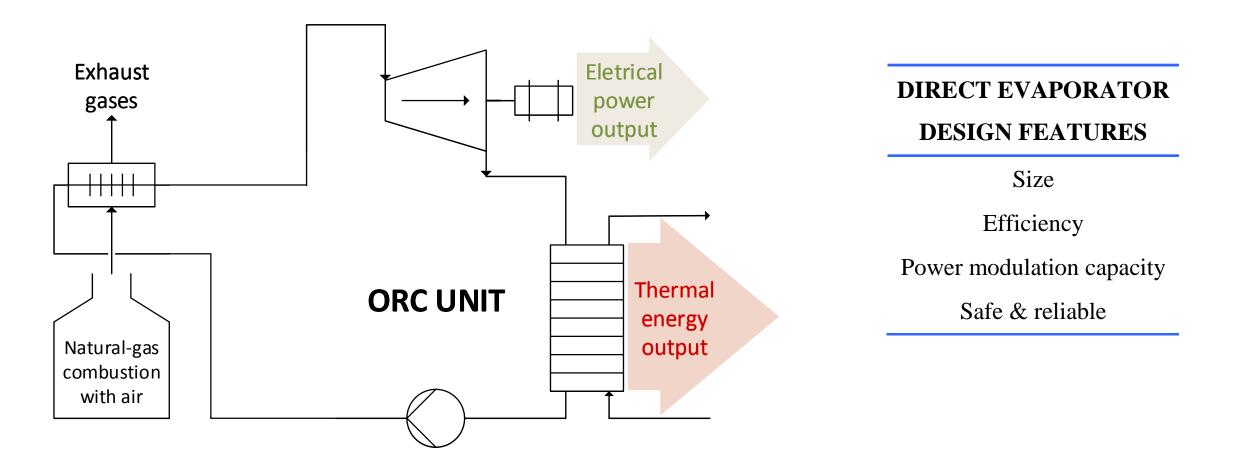
240 000 TJ***/year;

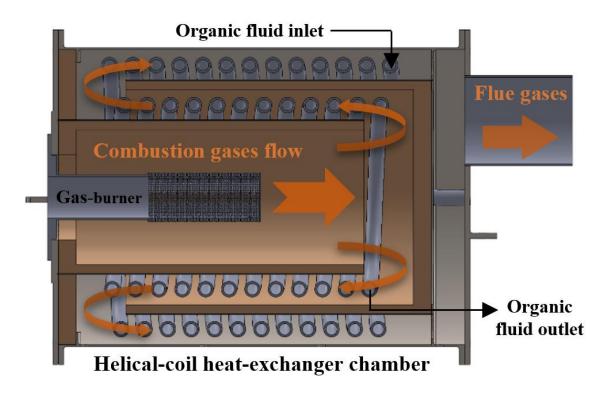
Potential GHG-emissions reduction in 2030:

13 MtCO_{2,eq}***/year;

14 MtCO_{2,eq}***/year;

* by replacement technology; ** by add-on technology; *** TJ Tera Joule; MtCO_{2,eq} Mega tonne of CO₂ equivalent;


HEBE SPONSORS


FEDER Funds through the program COMPETE: QREN-POFC-COMPETE-23101

SYSTEM TARGET

EVAPORATOR PROTOTYPE WORKING PRINCIPLE

DIRECT EVAPORATOR
DESIGN FEATURES

Size

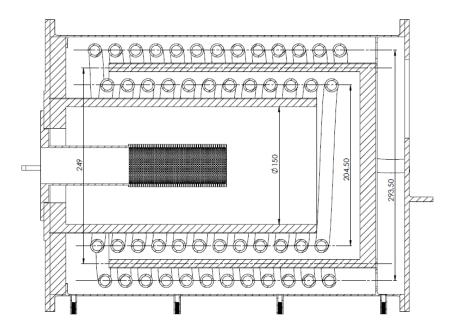
Efficiency

Power modulation capacity

Safe & reliable

EVAPORATOR PROTOTYPE MODELING

Micro-CHP Hebe	Comercial limitations	Combustion model
Working fluid selection	Tube dimensions (D_e, D_i) and properties (k_t)	Composition of the combustion gases
Working fluid temperatures (T _{f,in} , T _{f,out})	Burner nominal power (\dot{Q}_c)	Combustion gases temperatures ($T_{g,in}$, $T_{g,out}$)
Working fluid mass flow rate (\dot{m}_f)	Burner dimensions	Combustion gases mass flow rate (\dot{m}_g)
Required power (\dot{Q}_f)		


$$A_{ht}(L_t, D_e) = (NTU, U_{ht}, C_{min})$$

$$\longrightarrow \operatorname{NTU}\left(\frac{\operatorname{Cmin}}{\operatorname{Cmax}}, \varepsilon\right), \text{ where } \varepsilon\left(\dot{Q}_f, \dot{Q}_c\right)$$

$$\longrightarrow U_{ht}(h_h, R_w(k_t), h_c)$$
, where $h_x(Re_x, Nussel_x, k(T_x, p_x), D_x)$

$$\longrightarrow C_{min/max} (cp(T_x, p_x), \dot{m}_x)$$

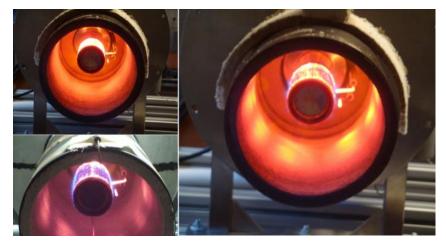
Final output: $L_t \cong 19,4 \ [m]$ given $\cong 24$ coils

EVAPORATOR PROTOTYPE CONSTRUCTION & ASSEMBLY

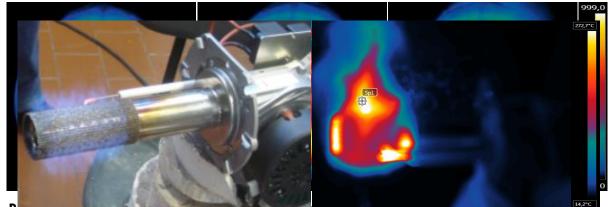
			\sim				
Model			🕶 RX 35 S/PV	▼ RX 70 S/PV	▼ RX 110 S/PV		
Burner	operation mode	e		Modulating (with variable speed)			
Modula	ation ratio at ma	ax. output	7÷1 8÷1 8÷1				
Servo-		tipe					
motor	run time	s	-				
Heat o	itout	kW	5 - 35	9 - 70	14 - 110		
rieat of	utput	Mcal/h	4,3 - 30,1 7,7 - 60,2 12 - 94,6				
Workin	ng temperature	°C min./max.		0/40			

10 of 20

EVAPORATOR PROTOTYPE PRELIMINARY TESTS

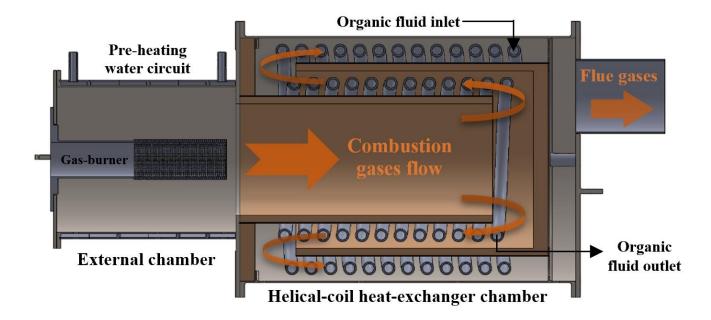


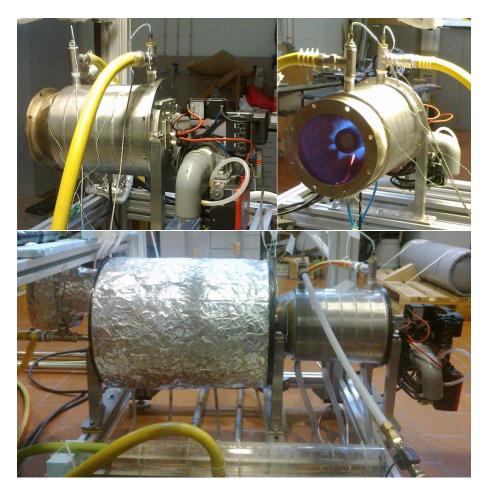
During the preliminary tests...

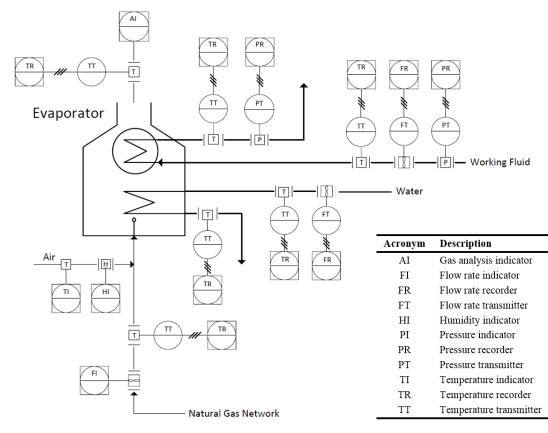


11 of 20

EVAPORATOR PROTOTYPE ACCIDENT DIAGNOSTIC




Examples of dangerous operational situations (Burner manufacturer contact)


Borner operang in open chamber mode (emissivity = 0,7) Let P_{1} be rational to per chamber mode (emissivity = 0,7) Let P_{2} be rational power of P_{2} be read P_{2} be rational product of P_{2} be rational product of P_{2} be read P_{2} be rational product of P_{2} be read P_{2}

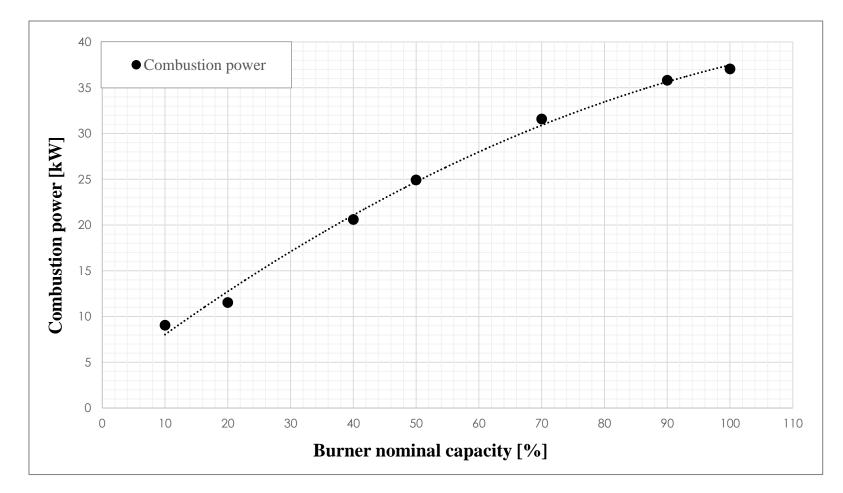
EVAPORATOR PROTOTYPE REDESIGNED WORKING PRINCIPLE AND SAFETY OPERATIONAL TESTS

EVAPORATOR PROTOTYPE THERMAL CHARACTERIZATION: TEST BENCH

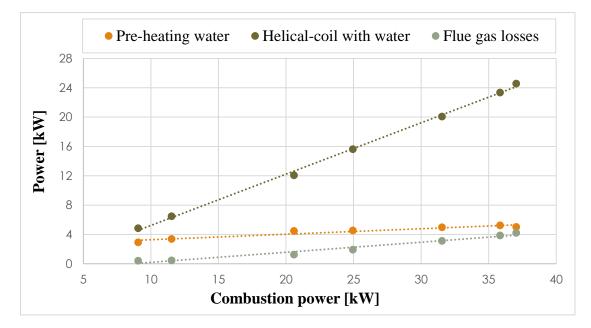
Measured parameters	Sensor-type	Operation limits	Uncertainty
Working fluid and water flow rate	Vane turbine flowmeter (infra-red sensor)	max. 20 bar; max. 25 L/min; max. 70 °C	+- 2%
Water and natural gas temperature	RTD PT100	-50 to 500 °C	B class
Working fluid, flue gases and air temperature	Thermocouple type 'K'	-40 to 1100 °C	+- 0.75%
Air humidity	External capacitive sensor	0 to 100%	+- 2,5%
Working fluid pressure	Relative pressure transducers	0 to 25 bar; -40 to 149 °C	0.25% FS
Natural gas flow rate	Diaphragm gas meter	0 to 1,5 bar; -25 to 55°C	Class 1.5 - by EN 1359
Combustion products	Dry flue gas analyser with non-dispersive infrared sensor for O ₂ , CO ₂ , CO	O ₂ : 0 to 25%; CO ₂ : 0 to 20%; CO: 0 to 10%	O ₂ : 0.01%; CO ₂ : 0.02%; CO: 0.1%

EVAPORATOR PROTOTYPE THERMAL CHARACTERIZATION: METHODOLOGY

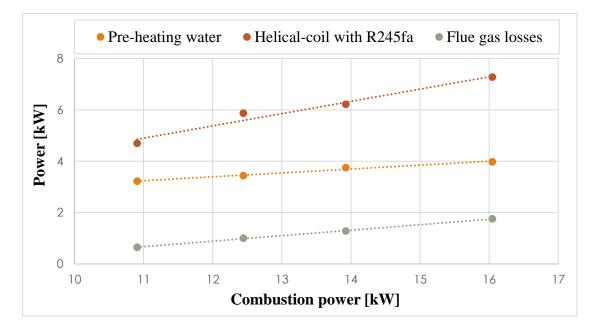
Stage 1: With water as working fluid (in a open circuit):


- Burner capacity: 10%, 20%, 40%, 50%, 70%, 90% and 100%;
- Working fluid mass flow rate: 0,1 kg/s, 0,15 kg/s and 0,2 kg/s;
- Water (CW) mass flow rate: 0,1 kg/s;
- Time: 300 seconds.

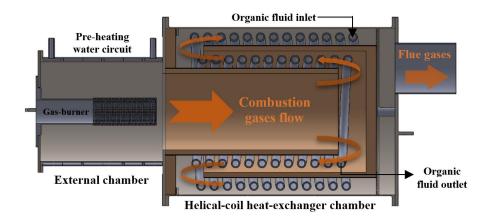
Stage 2: With R245fa (HEBE micro-CHP system integrated):


- Burner capacity: 17%, 22%, 25% and 30%;
- Working fluid mass flow rate: adjusted on-site (P1 rotation);
- Water mass flow rate: 0,1 kg/s;
- Time: 300 seconds.

Variable objective [unit]	Mathematical equation
Combustion power [kW]	$\dot{Q}_{comb} = \sum_{P} (\dot{n} \times \bar{h}_{f}^{o})_{P} - \sum_{R} (\dot{n} \times \bar{h}_{f}^{o})_{R}$
Pre-heating water power [kW]	$\dot{Q}_w = \dot{m}_w \times cp_w \times \Delta T_w$
Working fluid power [kW]	$\dot{Q}_f = \dot{m}_f \times \Delta h_f$
Flue losses [kW]	$\dot{Q}_{flue} = \sum (\dot{n}_P imes \Delta ar{h}_P)$
Other losses [kW]	$\dot{Q}_{loss} = \dot{Q}_{comb} - \dot{Q}_w - \dot{Q}_f - \dot{Q}_{flue}$
Global efficiency [%]	$\eta_{global} = (\dot{Q}_f + \dot{Q}_w) / \dot{Q}_{comb}$


EVAPORATOR PROTOTYPE THERMAL CHARACTERIZATION: RESULTS

EVAPORATOR PROTOTYPE THERMAL CHARACTERIZATION: RESULTS



Burner capacity [%]	10	20	40	50	70	90	100
Combustion power [kW]	9.053	11.532	20.598	24.952	31.557	35.855	37.053
Water power [kW]	3.064	3.383	4.473	4.524	4.967	5.224	5.016
Working fluid power [kW]	5.134	6.594	12.063	15.61	20.06	23.345	24.565
Flue losses [kW]	0.412	0.447	1.248	1.923	3.106	3.864	4.206
Other losses [kW]	0.443	1.108	2.814	2.895	3.424	3.422	3.266
Global efficiency [%]	90.6	86.52	80.28	80.69	79.31	79.68	79.83

Burner capacity [%]	17	22	25	30
Combustion power [kW]	10.907	12.445	13.928	16.047
Water power [kW]	3.218	3.538	3.747	3.974
Working fluid power [kW]	4.695	5.864	6.213	7.275
Flue losses [kW]	0.646	1.001	1.28	1.756
Other losses [kW]	2.348	2.266	2.688	3.042
Global efficiency [%]	72.55	75.55	71.51	70.1

EVAPORATOR PROTOTYPE CONCLUSIONS & FUTURE WORK

- A burner heat-exchanger set was built to perform the direct vaporization of the organic fluid of an ORC system.
- Fulfill safety and control requests;
- The heating transfer coefficient of the external flow needs to be optimized;
- The external chamber appears to have very potential:
 - i. Preclude the overheating of the gas-burner head;
- ii. Increasing the ORC efficiency by pre/post heating the end user water;
- iii. Decreasing the combustion gas temperature before reaching the organic fluid, reducing the risk of thermal degradation;

THANK YOU FOR YOUR ATTENTION

João Silva Pereira

(joao.pereira@dem.uc.pt)

4th International Seminar on Organic Rankine Cycle Power Systems (2017)