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Introduction

Organic Rankine Cycle (ORC) is a promising waste heat recovery
technology providing 3-5% fuel economy improvement for Heavy-
Duty On-Highway trucks

A typical ORC cycle




ORC Test System

*= An ORC test rig was built

* Motivation
= System integration and control development
® ORC component performance and durability testing
* Fuel economy benefit measurement

“ Features
® Coupled with a 13L HD diesel engine w/ HP EGR & VTG
* Tailpipe and EGR evaporators in parallel
® Turbine expander with 48V mtegrated generator
= Ethanol as working fluid il :




ORC System Layout
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System Development — Hardware

PRODUCT RANGE

O EGR evaporator

O Exhaust tailpipe evaporator

O eTurbine expander

O eTurbine Controller
O Exhaust bypass valve

O Condenser

BorgWarner offers a wide range of components for the ORC system




ORC Test Rig / Dyno Controls Setup
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ORC Control Challenges

Complex MIMO nonlinear system
Wide operation range (T, P, 2-phase, expander speed)

Very challenging ORC control in transient cycles
Fast disturbances (engine exhaust flow/T) while slow WF temperature
response
Different time constants for EGR and TP evaporators
After-treatment system on TP path as a thermal buffer
Limited information in literature on ORC transient control

An optimal control problem with safety limitations
Temperature limit due to dissociation/ flammability of working fluid
Pressure limit due to structural integrity of key components
Vapor phase limit on turbine expander operation




PID Based Controller

 APID based ORC controller was developed and enabled steady state
and slow transient operation of the test rig

ORC Control Plot — Startup & Shut down ORC Control Plot — T, , Step
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* The PID controller worked well in steady-state and slow transient
operations, but had difficulties in fast transient conditions due to poor
disturbance rejection and undesired coupling between PID control
loops

« Therefore Model Predictive control (MPC) approach was adopted in
the second phase of the project




MPC Control Structure

Constraints represent
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temperature tracking error safety bounds
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Evaporator Control Oriented Model

* Moving boundary model (MBM): 3 regions
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* Inputs: mg ;,,; Outputs: he ., Disturbances: my i, Ty in, hfin
« The MBM model was correlated with test rig data

Ref: A. Yebi, “Nonlinear Model Predictive Control Strategies for a Parallel Evaporator Diesel Engine Waste Heat Recovery System,” DSCC 2016-9801
J. Jensen, "Dynamic Modeling of Thermo-Fluid Systems with Focus on Evaporators for Refrigeration,” 2003.
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MPC Implementation on an Embedded Platform

 Embedded Control Hardware Specification
« dSpace Micro Autobox Gen Il
* |IBM PowerPC 900MHz, 16MB RAM

« MPC Real-time Implementation
« Execution time reduction to meet real-time constraint
« Memory consumption reduction to fit into embedded platform

« Two variants of MPC
« Adaptive Linear MPC (LMPC) 4\ MathWorkse
Mathworks MPC Toolbox

* Nonlinear MPC (NPMC)

ACADO Toolkit from Univ. of Leuven m
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Comparison of PID and MPC — Simulation

Engine conditions:
B (1575RPM, 1540Nm) to A (1200 RPM, 1000Nm) to B
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MPC has better temperature regulation and disturbance rejection,
with fast response and minimal overshoot
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MPC Simulation over a Transient Cycle
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MPC Controller Test Result — T Step
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MPC Controller Test Result — Engine Speed/Load Ramp
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Summary

An ORC test system, which recovers waste heat from engine tailpipe
exhaust and EGR, was implemented

A PID based controller was developed enabling steady state and
slow transient operation of the ORC system

Two MPC controllers (LMPC & NMPC) were developed which
provided better temperature control and improved disturbance
rejection in simulation

MPC controllers were implemented on a real-time embedded
platform and initial test results were satisfactory
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ORC Publications
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= Anschel P., “A System-Level Approach to the Development of Optimized ORC Waste Heat Recovery
Components for Heavy Duty Truck,” Engine ORC Consortium, Belfast, Northern Ireland, 2016.

= Yebi, A., Xu, B., Liu, X., Shutty, J., Anschel, P., Onori, S., et al., "Nonlinear Model Predictive Control
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= Xu, B., Liu, X., Shutty, J., Anschel, P. et al., "Physics-Based Modeling and Transient Validation of an
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= Xu, B., Yebi, A, Liu, X. , Shutty, J., Anschel, P., Onori, S., et al., "Power Maximization of A Heavy
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MPC vs PID Controller

MPC has better performance over PID in transient conditions
Built-in plant model for response prediction
Optimizer to find optimal control inputs
Potential synergy with future GPS-based road load prediction system

but requires more CPU computation time, memory consumption, and
modeling effort.

Looking into ORC control options on vehicle
Advanced PID with better feed forward model

or
Linear MPC
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