

Non-ideal effects on the typical trailing edge shock pattern of ORC turbine blades

D. Vimercati^{a,c}, G. Gori^{a,c}, A. Spinelli^{b,c} and A. Guardone^{a,c}

Politecnico di Milano - Italy ^a Department of Aerospace Science and Technology ^b Energy Department ^c CREA Lab

MOTIVATIONS

POLITECNICO

MILANO 1863

CREALab

erc

ORC attractive features

- Adaptability to various (low temperature) hea sources
- Lower complexity wrt steam cycle
- Turbine technical advantages wrt steam turbine (lower rmp, lower pressures, no erosion)
- High flexibility
- o ...

ORC challenges

- Choice of suitable working fluid
- Transient phenomena
- Complex thermodynamic modelling of the working fluid
- \circ $\;$ Heat exchangers and turbine design
- o ...

MOTIVATIONS

POLITECNICO

MILANO 1863

CREALab

erc

ORC attractive features

- Adaptability to various (low temperature) hea sources
- Lower complexity wrt steam cycle
- Turbine technical advantages wrt steam turbine (lower rmp, lower pressures, no erosion)
- High flexibility
- o ...

ORC challenges

- Choice of suitable working fluid
- o Transient phenomena
- Complex thermodynamic modelling of the working fluid
- Heat exchangers and turbine design
- o ...

MOTIVATIONS

ORC turbine

- Typically few stages (often one only)
- High pressure ratio

CREALab

erc

- Design expansion through the non-ideal regime: low values of the speed of sound → highly supersonic flow
- Shock waves: fish-tail shocks, post-expansion, off-design
- Large contribution of inviscid loss to total loss

Research question

How do non-ideal effects across oblique shocks impact on the design of ORC turbines?

PRESENTATION OUTLINE

- → Introduction: NICFD
- → Methodology
- → Oblique shocks in the non-ideal flow regime
- → Application: oblique shocks in siloxane MDM
- → Discussion and concluding remarks

erc

INTRODUCTION

Non-Ideal Compressible Fluid Dynamics $Pv \neq RT$

CREALab

erc

Fluid: MDM (RefProp)

POLITECNICO

MILANO 1863

- Subject: dense vapours, supercritical fluids, two-phase compressible flows
- o Compressibility
- Phase transition
- o Critical point

Application

- o ORC
- Supercritical CO₂
- \circ Refrigeration
- o Oil & Gas compression/expansion
- o ...

INTRODUCTION

Non-Ideal Compressible Fluid Dynamics $Pv \neq RT$

Fluid: MDM (RefProp)

erc

D. Vimercati, G. Gori, A. Spinelli, A. Guardone |

Measure of non-ideality in compressible flows:

The fundamental derivative of gasdynamics (Thompson 1971)

$$\Gamma = 1 + \frac{\rho}{c} \left(\frac{\partial c}{\partial \rho} \right)_{s} = 1 + \frac{\rho}{c} \left(\frac{\partial^{2} P}{\partial \rho^{2}} \right)_{s} = \frac{v^{3}}{2c^{2}} \left(\frac{\partial^{2} P}{\partial v^{2}} \right)_{s}$$

Gasdynamic regimes

- \circ $\Gamma > 1$ Ideal regime
- \circ $\Gamma < 1$ Non-Ideal regime
 - $0 < \Gamma < 1$ Non-Ideal classical regime
 - $\Gamma < 0$ Non-Classical regime

METHODOLOGY

CREALab

erc

POLITECNICO

MILANO 1863

Rankine-Hugoniot relations

$$h_{A} - \frac{1}{2}P_{A}(v_{A} + v_{B}) = h_{B} - \frac{1}{2}P_{B}(v_{A} + v_{B})$$

$$\sqrt{-\frac{(P_{B} - P_{A})}{(v_{B} - v_{A})}} = \rho_{A}|\boldsymbol{u}_{A}|\sin\beta$$

$$\rho_{A}\tan\beta = \rho_{B}\tan(\beta - \theta)$$

$$|\boldsymbol{u}_{A}|\cos\beta = |\boldsymbol{u}_{B}|\cos(\beta - \theta)$$

Admissibility conditions

 $s_{\rm B} > s_{\rm A}$ $\left(M_{n\rm B} = \frac{|u_{n\rm B}|}{c_{\rm B}} < 1 < \frac{|u_{n\rm A}|}{c_{\rm A}} = M_{n\rm A}\right)$

METHODOLOGY

erc

A – Mach wave (acoustic limit)

CREALab

N – normal shock

POLITECNICO

MILANO 1863

- D detachment point (max deflection)
- S downstream sonic point

OBLIQUE SHOCKS IN THE NON-IDEAL REGIME

Perfect-gas: explicit formulas

$$\tan \theta = \frac{2}{\tan \beta} \left[\frac{M_A^2 \sin^2 \beta - 1}{M_A^2 (\gamma + \cos 2\beta) + 2} \right]$$
$$\frac{\rho_B}{\rho_A} = \frac{(\gamma + 1)M_A^2 \sin^2 \beta}{2 + (\gamma - 1)M_A^2 \sin^2 \beta}$$

$$\frac{P_{\rm B}}{P_{\rm A}} = 1 + \frac{2\gamma}{\gamma+1} \left(M_{\rm A}^2 \sin^2 \beta - 1 \right)$$

POLITECNICO

MILANO 1863

$$M_{\rm B}^{2} = \frac{1}{\sin^{2}(\beta - \vartheta)} \frac{1 + \frac{\gamma - 1}{2} M_{\rm A}^{2} \sin^{2} \beta}{\gamma M_{\rm A}^{2} \sin^{2} \beta - \frac{\gamma - 1}{2}}$$

CREALab

erc

Dependencies:

 $u_{_{tA}}$

 $\beta(\vartheta, M_{\rm A})$

• Deflection angle ϑ

 $\overline{\boldsymbol{u}}_{\mathrm{A}}$

(A)

• Upstream Mach number M_A

No dependence on the upstream thermodynamic state (e.g. P_A , ρ_A)

 $u_{_{t\mathrm{B}}}$

 $u_{_{n\mathrm{P}}}$

(B)

OBLIQUE SHOCKS IN THE NON-IDEAL REGIME

Non-ideal regime: acoustic limit

$$\beta = \sin^{-1}(1/M_{\rm A}) + \frac{\Gamma_{\rm A}}{2} \frac{M_{\rm A}^2}{M_{\rm A}^2 - 1} \vartheta + \mathcal{O}(\vartheta^2)$$

$$\frac{\rho_{\rm B}}{\rho_{\rm A}} = 1 + \frac{M_{\rm A}\Gamma_{\rm A}}{\sqrt{M_{\rm A}^2 - 1}}\vartheta + \mathcal{O}(\vartheta^2)$$

POLITECNICO

MILANO 1863

$$\frac{P_{\rm B}}{P_{\rm A}} = 1 + \frac{\rho_{\rm A} c_{\rm A}^2}{P_{\rm A}} \frac{M_{\rm A} \Gamma_{\rm A}}{\sqrt{M_{\rm A}^2 - 1}} \vartheta + \mathcal{O}(\vartheta^2)$$

CREALab

$$M_{\rm B} = M_{\rm A} + \left(1 - \Gamma_{\rm A} - \frac{1}{M_{\rm A}^2}\right) \frac{M_{\rm A}^3}{\sqrt{M_{\rm A}^2 - 1}} \vartheta + \mathcal{O}(\vartheta^2)$$

erc

Dependences:

- Deflection angle ϑ
- Upstream Mach number M_A

10

Upstream thermodynamic

state (e.g., P_A , ρ_A)

Parametric study

erc

CREALab

erc

CREALab

POLITECNICO

MILANO 1863

• Acoustic limit:

$$\beta = \sin^{-1}(1/M_{\rm A}) + \frac{\Gamma_{\rm A}}{2} \frac{M_{\rm A}^2}{M_{\rm A}^2 - 1} \vartheta$$

dependence on the upstream tmd state through $\ensuremath{\varGamma_A}$

 Strong dependence of the detachment angles on the upstream tmd state

erc

CREALab

POLITECNICO

MILANO 1863

o Acoustic limit:

$$\beta = \sin^{-1}(1/M_{\rm A}) + \frac{\Gamma_{\rm A}}{2} \frac{M_{\rm A}^2}{M_{\rm A}^2 - 1} \vartheta$$

dependence on the upstream tmd state through $\ensuremath{\varGamma_A}$

 Strong dependence of the detachment angles on the upstream tmd state

erc

CREALab

POLITECNICO

MILANO 1863

$$M_{\rm B} - \vartheta$$
 Diagram

o Acoustic limit:

$$M_{\rm B} = M_{\rm A} + \left(1 - \Gamma_{\rm A} - \frac{1}{M_{\rm A}^2}\right) \frac{M_{\rm A}^3}{\sqrt{M_{\rm A}^2 - 1}} \vartheta$$

dependence on the upstream tmd state through $\Gamma_{\!A}$

erc

CREALab

POLITECNICO

MILANO 1863

$$P_{\rm B}^t/P_{\rm A}^t - \vartheta$$
 Diagram

- Fixed ϑ → non-monotonic variation of the shock loss with the upstream pressure
- Larger shock loss across strong oblique shocks w.r.t perfect-gas case
- Smaller shock loss across weak oblique shocks w.r.t perfect-gas case for low values of Γ_A

15

Further parametric study

• Same fluid, same isentrope, $M_{\rm A} = 1.5$

2.0

0

 Non-ideal oblique shocks (Mach number increasing): lower threshold on the upstream Mach number

$$M_{\rm A,min} = 1/\sqrt{1 - \Gamma_{\rm A,min}}$$

D. Vimercati, G. Gori, A. Spinelli, A. Guardone |

20

 θ [deg]

10

CREALab

30

40

Extension to other fluids

 Same qualitative behaviour expected for most moderate-to-high molecularly complex fluids

 Qualitatively similar thermodynamic topology of the fundamental derivative of gasdynamics

erc

CREALab

POLITECNICO

MILANO 1863

COMMENTS

Extension to other fluids

 Non-ideal oblique shocks (Mach number increasing): lower threshold on the upstream Mach number

CREALab

erc

 $M_{\rm A,min} = 1/\sqrt{1 - \Gamma_{\rm A,min}}$

 Total conditions for non-ideal oblique shocks may exceed thermal stability limit

Example: minimum P^t and T^t for nonideal oblique shocks along isentrope tangent to VLE

Fluid	P_{\min}^t [bar]	$T_{\min}^t[^{\circ}C]$	$T_{\rm lim}[^{\circ}{\rm C}]$
MDM	16.55	299.0	∼ 290÷300
MM	25.90	262.0	~ 300
Toluene	74.00	355.0	~ 400
Isopentane	64.80	221.0	~ 290
Cyclopentane	97.30	280.7	~ 275
R245fa	107.77	204.0	~ 300
			T /

CONCLUSIONS

- Oblique shock waves were investigated in the non-ideal gime because of their relevance to ORC turbine flows
- Main results:
 - Shock angle polar shifts to higher deflection angle
 - Appearence of Mach number-increasing oblique shocks (nonideal oblique shocks)
 - Shock loss: larger across strong oblique shocks, possibly smaller across weak oblique shocks w.r.t. perfect-gas case
- MDM used for explanatory purposes, direct extension to other molecularly complex fluids employed in ORCs
- Highly non-ideal effects at design conditions only for supercritical ORCs

erc

FUTURE WORK

 Numerical investigation on real vanes configurations at design and off-design conditions

 Experimental observation of non-ideal effects across oblique shock waves at TROVA (Test Rig for Organic Vapours), CREALab PoliMi

erc

...QUESTIONS?

The research is funded by the European Research Council under the Grant ERC Consolidator 2013, Project **NSHOCK** 617603

European Research Council Established by the European Commission

Thanks for your attention!

erc