

Experimental observation of non-ideal expanding flows of siloxane MDM vapor for ORC applications

A. Spinelli, <u>G. Cammi</u>, M. Zocca, S. Gallarini, F. Cozzi, P. Gaetani, V. Dossena, A. Guardone

Motivation

Experimental data are needed to validate software tools

CREALab

The Facility

Test runs were performed on the TROVA blow-down wind tunnel

POLITECNICO

MILANO 1863

Measured quantities are: total pressure and temperature, and static pressures

CREALab

A steady state nozzle flow can be assumed at any given time

CREALab

erc

POLITECNICO

MILANO 1863

Evolution of total conditions

Two different nozzle geometries were tested using the siloxane MDM

Nozzle M2.0 features a backward facing step at the geometrical throat

CREALab

Nozzle M1.5 features an increased roughness at the walls

4 test runs will be presented

	TEST	P _{T,max} bar	T _{T,max} °C	Z _{T,min}
	M2.0L	4.58	247	0.82
	M1.5L	4.59	239	0.81
•	M2.0H	9.02	269	0.65
	M1.5H	9.20	268	0.63

5 steady state nozzle flows were extracted for each test

TEST M2.0H Conditions extracted

		P _T bar	P ₉ bar	°C	Z_{T}
•	Α	9.02	1.11	268.6	0.65
٠	В	7.52	0.92	276.2	0.75
▼	С	6.27	0.76	275.9	0.8
0	D	3.29	0.39	271.4	0.9
\Diamond	Ε	0.80	0.09	265.1	0.98

Experimental data are in good agreement with CFD calculations

Ref. to 'Experimental assessment of the open-source SU2 CFD suite for ORC applications', G. Gori, M. Zocca, G. Cammi, A. Spinelli, A. Guardone Speech: Wednesday session 3B 17:10

POLITECNICO MILANO 1863

MILANO 1863

CREALab

Experimental data were compared with:

- experimental data of air flow
- CFD simulation of MDM treated as PIG

POLITECNICO

MILANO 1863

Non-negligible non-ideal effects detected

M2.0L Zoom at the Throat

M2.0H Zoom at the Throat

 Δ from PIG assumption at Z_T = 0.82 : -6% on P/P_T, -20% on p, +16% on v_{flow}

CREALab

POLITECNICO

MILANO 1863

Measuring range issues in Schlieren images

CREALab

erc

M2.0L A $P_{T} = 4.58$ bar $Z_{T} = 0.82$

M2.0L C $P_{T} = 3,39 \text{ bar}$ $Z_{T} = 0.88$

M2.0L E $P_{T} = 0.80 \text{ bar}$ $Z_{T} = 0.98$ **Ref. to** Conti C, Spinelli A et al, Schlieren visualization of non-ideal compressible fluid flows, HEFAT2017

The local Mach number was measured from Schlieren images of M1.5 test runs

M1.5L A $P_T = 4.59$ bar, $Z_T = 0.81$

$$M = \frac{1}{\sin \theta}$$

erc

CREALab

POLITECNICO

MILANO 1863

Line detection techniques were used to detect Mach lines and directly measure the Mach number on the nozzle axis

M1.5L A $P_{T} = 4.59 \text{ bar}, Z_{T} = 0.81$

*Lo RC, Tsai WH (1995) Gray-scale hough trasform for thick line detection in grey-scale images, Pattern Recognition 28:647–661

CREALab

erc

Line detection algorithm

- image cut and contrast enhancement
- binarization of the image
- Hough transform and peak detection
- computation of lines inclinations and positions*
- computation of Mach numbers and their uncertainties

MILANO 1863

CREALab

Local M detected are in agreement with experimental data and CFD simulations

Conclusion

Nozzle expansions of complex vapor MDM were successfully characterize measuring:

 $\succ P_{T}$

POLITECNICO

MILANO 1863

Static Pressures along the axis

erc

Local Mach numbers

CREALab

Current work:

Future Developments

Following experimental campaigns will be performed aiming at:

- observing non-ideal flow features;
- investigating mixture flow fields

Visit our laboratory during the lunch break: information at the registration desk

