

EVALUATING THE QUALITY OF STEADY-STATE MULTIVARIATE EXPERIMENTAL DATA IN VARIOUS ORC EXPERIMENTAL SETUPS

S. Quoilin, O. Dumont, R. Dickes, V. Lemort

Thermodynamics Laboratory, University of Liège

September 15th 2017

ORC 2017 Conference

Introduction Quality of experimental data

- ✓ High quality data is required for the development, the calibration and the validation of models
- ✓ Different types of models:
 - ✓ Deterministic models
 - ✓ Semi-empirical models
 - ✓ Empirical models
- Experimental data is subject to many measurements errors, test bench malfunctions, operator misuse or misinterpretation, etc.
- ✓ Special focus on multidimensional inputs
- ✓ Goal of this work: provide an open-source tool to assess the quality of experimental data and its « explainability »
- ✓ Several key questions to be answered

Question 1: "Most likely" shape of the function explaining the data?

Question 2: *Repeatability and detection of outliers*

• Best explanatory variables?

Goal: explain the data with the smallest possible set of input variables

- Data accuracy / noise level?
 - Goal: determine experimentally what it the data accuracy => what would be the best accuracy a model could reach with this data
 - Necessity to de-noise the data

Data analysis: Use of Gaussian Process regressions / Kriging interpolation

Gaussian process regression

- Traditional regression (e.g. based on least-squares):
 - Use of parametric functions
 - Function is defined *a-priori*
- Gaussian process regression:
 - Probabilistic distribution of the function with respect to the data points
 - Instead of the definition of a parametric function, definition of a Covariance Matrix
- Bayesian formulation:

$$p(f|y) = rac{p(y|f)p(f)}{p(y)}$$

• Covariance functions (kernel):

$$K(x, x') = \sigma_0^2 \exp\left[-\frac{1}{2}\left(\frac{x-x'}{\lambda}\right)^2\right]$$

Gaussian process

- 1. Definition of a GP prior
- 2. Use Baysian inference to update the probability distribution

Gaussian process: Regression

Gaussian process: Effect of outliers

Gaussian process: Effect of noise

Unidimensional Gaussian Process regression:

Use of a SE kernel:

$$f \sim \mathcal{GP}(0, k_{ff})$$
, where $k_{ff}(t_i, t_j) = \sigma_f^2 \exp\left\{-rac{1}{2\ell^2}(t_i - t_j)^2
ight\}$

Multidimensional Gaussian Process regression:

Use of an SE ARD Kernel:

$$k_{ff}(x^{(i)}, x^{(j)}) = \sigma_f^2 \exp\left\{-\sum_d \frac{1}{2\ell_d^2} (x_d^{(i)} - x_d^{(j)})^2\right\}$$

The hyperparameters I_d must be optimized to avoir under/over fitting

Three-step process:

1. Optimize the parameters (l1,l2,l3,...) to maximize the marginal likelihood

$$p(y) = \int p(y|f)p(f)df$$

- 2. Computation of the mean average error in Cross-Validation / Training
- 3. Visual verification:

Cross-validation, good fit:

Mean relative error:	
MRE with all points:	2.7%
MRE in cross-validation:	7.6%

Three-step process:

1. Optimize the parameters (I1,I2,I3,...) to maximize the marginal likelihood

$$p(y) = \int p(y|f)p(f)df$$

- 2. Computation of the mean absolute error in Cross-Validation / Training
- 3. Visual verification:

Cross-validation, overfit:

Mean relative error:	
MRE with all points:	1.1%
MRE in cross-validation:	18.5%

Examples of experimental test rig

Experimental setups Open-drive scroll compressor

- Converted into an expander
- Built in volumetric ratio : 3.94
- Absence of lubrication
- Not tight

Experimental setups Open-drive scroll compressor

Experimental investigations Reversible HP/ORC unit

$$\eta_{ORC} = \frac{W_{exp,el} - W_{pump,el}}{\dot{Q}_{ev}}$$

Experimental investigations Sun2Power unit

P : pressure sensor - T : thermocouple - \dot{m} : mass flow meter \dot{W} : power meter - \dot{V} : volumetric flow meter

Sun2Power unit:

- 2kWe recuperative ORC
- R245fa as working fluid
- Scroll expander + diaphragm pump
- <u>Two BPHEXs (EV + REC)</u>
- One fin coil air-cooled condenser

Reference database:

- Experimental measurements
- Complete range of conditions (40 pts)

Outlier detection Example with the HP/ORC test rig

Feature selection Example with the Sun2power test rig

Summary

Table 2. Inputs variables of the three considered processes

HP/ORC		Sun2Power		Expander	
Heat source flow rate: Heat sink flow rate: Heat source temperature Heat sink temperature Pump speed:	$\dot{M}_{su,ev}[kg/s]$ $\dot{M}_{sf,cd}[kg/s]$ $T_{hf,su,ev}[K]$ $T_{cf,su,cd}[K]$ $N_{pp}[rpm]$	Heat source flow rate: Heat sink flow rate: Heat source temperature Heat sink temperature Expander Rotating speed: Expander Rotating speed: Condenser fan speed: Ambient temperature:	$\dot{V}_{su,ev}[kg/s]$ $\dot{V}_{sf,cd}[kg/s]$ $T_{hf,su,ev}[K]$ $T_{ef,su,cd}[K]$ $Hz_{pp}[s^{-1}]$ $Hz_{exp}[s^{-1}]$ $Hz_{cd}[s^{-1}]$ $T_{amb}[K]$	Inlet pressure: Outlet pressure: Rotating speed: Inlet temperature: Ambient temperature:	$P_{su}[Pa]$ $P_{ex}[Pa]$ $N_{rot}[rpm]$ $T_{su}[K]$ $T_{amb}[K]$
Predicted variable: Po 2 outliers	e: Power output Predicted variable: Power output No outlier		Predicted variable: Pc 2 outliers	ower output	

MAPE, GP: 1,92% MAPE, physical model: 2.45 % Predicted variable: Power output No outlier MAPE, GP: 4.56% MAPE, physical model: 8.12 %

Predicted variable: Power output 2 outliers MAPE, GP: 0.99% MAPE, physical model: 1.94 %

Conclusions

Starting from three ORC-related datasets, the proposed framework allowed us to:

- ✓ Perform non-linear, non-parametric regression
- ✓ Detect doubtful data points (outliers)
- Select the relevant input variables for the process to model (feature selection)
- Plot the effect of each relevant input variable by keeping the others constant (response surface)
- ✓ Evaluate the noise level in the data (i.e. the maximum model accuracy)
- ✓ Compare the "quality" of various datasets

The GPExp tool:

- ✓ Open-source
- $\checkmark~$ Easy to download and run in Matlab
- ✓ Graphical user interface (GUI)
- ✓ External contributions and improvements are welcome

p [-]

epsilon_s

phi .

epsilons

0.5

0

2000

N_{rot} [rpm]

4000 0

V_{rot}[rpm] p {su}[bar]

Results

Download GPExp: https://github.com/squoilin/GPExp

0.5

0.6

0.7

0.3

0.2

0.2

0.3

0.4

10

5

r_p [-]

Δ

559

2

0

-4

-2

Ο

Number of std devs

EVALUATING THE QUALITY OF STEADY-STATE MULTIVARIATE EXPERIMENTAL DATA IN VARIOUS ORC EXPERIMENTAL SETUPS

S. Quoilin, O. Dumont, R. Dickes, V. Lemort

Thermodynamics Laboratory, University of Liège

September 15th 2017

ORC 2017 Conference