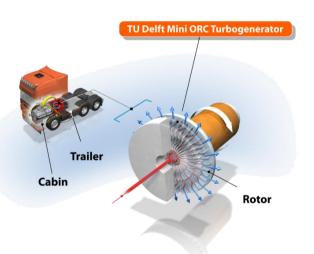
Design, Modelling, and Control of a Waste Heat Recovery Unit for Heavy-Duty Truck Engines

S. Trabucchi, C. De Servi, F. Casella, P. Colonna

4th International Seminar on Organic Rankine Cycle Power Systems WELCOME BACK HOME!


Milan, 13th-15th September 2017

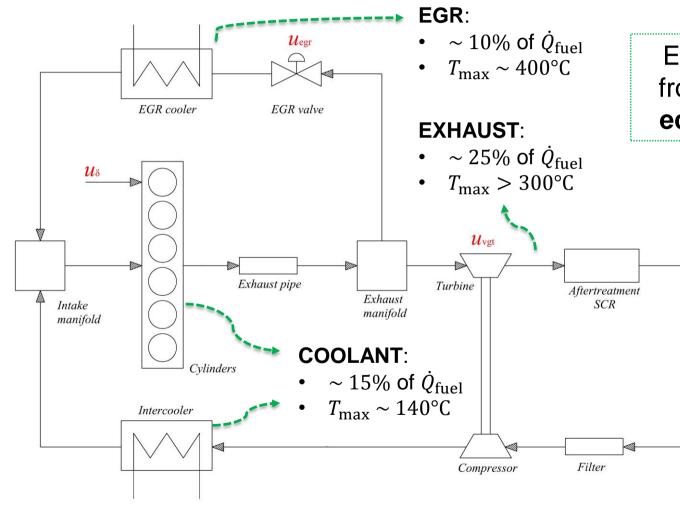
Contents

- Thermal sources for Waste Heat Recovery (WHR)
- ORC configuration and optimization
- Control system design and simulation
- Conclusions

1

Motivations

- 1. Actual potential for the WHR unit?
- 2. Cycle configuration: best trade-off between simplicity and efficiency?
- 3. Control issues related to the chosen configuration?



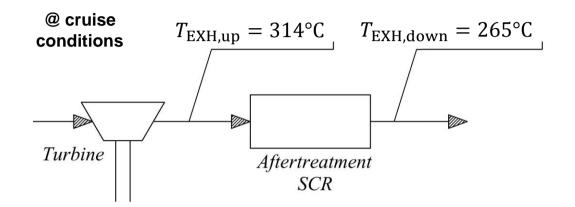
WHR unit design

Truck engine waste energy

Delft

Propulsion & Power EGR and EXH interesting from **thermodynamic** and **economical** point of view!

Diesel engine model tuned on experimental data from modern ICE:


- $\eta_{\rm DE} \cong 42\%$
- $\dot{W}_{net} = 101.5 \text{ kW}$
- $v_{\text{cruise}} = 85 \text{ km h}^{-1}$

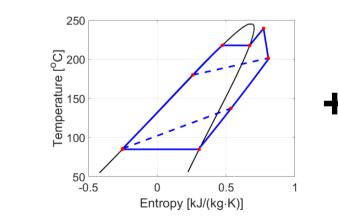
WHR unit constraints

ORC can not affect η_{DE} , <u>fully add-on system</u>:

full cooling of EGR stream
 → maximize cylinders charge

- exhaust heat recovery upstream or downstream of the ATU
 → SCR minimum operating temperature is 200°C
- radiator cooling capacity not fully exploited in cruise conditions
 → cooling water minimum temperature down to 70°C
 → ORC condenser in series to engine radiator

Cycle design & optimization


- exhaust (EXH) and EGR evaporators in parallel
- single pressure level
- working fluid: MM (simple siloxane)
 - → high molecular complexity, $h_{\text{blade}} \uparrow \text{ and } \omega \downarrow$
 - \rightarrow stable up to 300°C
- compact end efficient two stages axial turbine
- $T_{\text{cond}} = 85^{\circ}\text{C}$, fixed

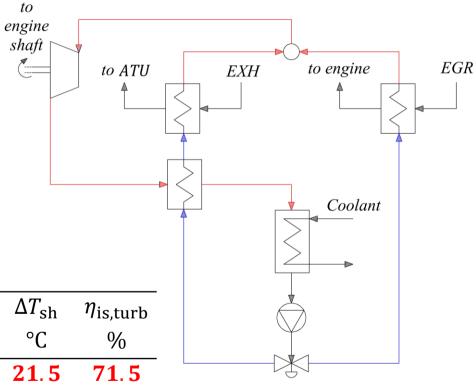
elt

Innovative integrated design method: simultaneous optimization of cycle

parameters and turbine geometry

 $\eta_{\rm is,turb}$ not set a priori

*image taken from www.braytonenergy.net

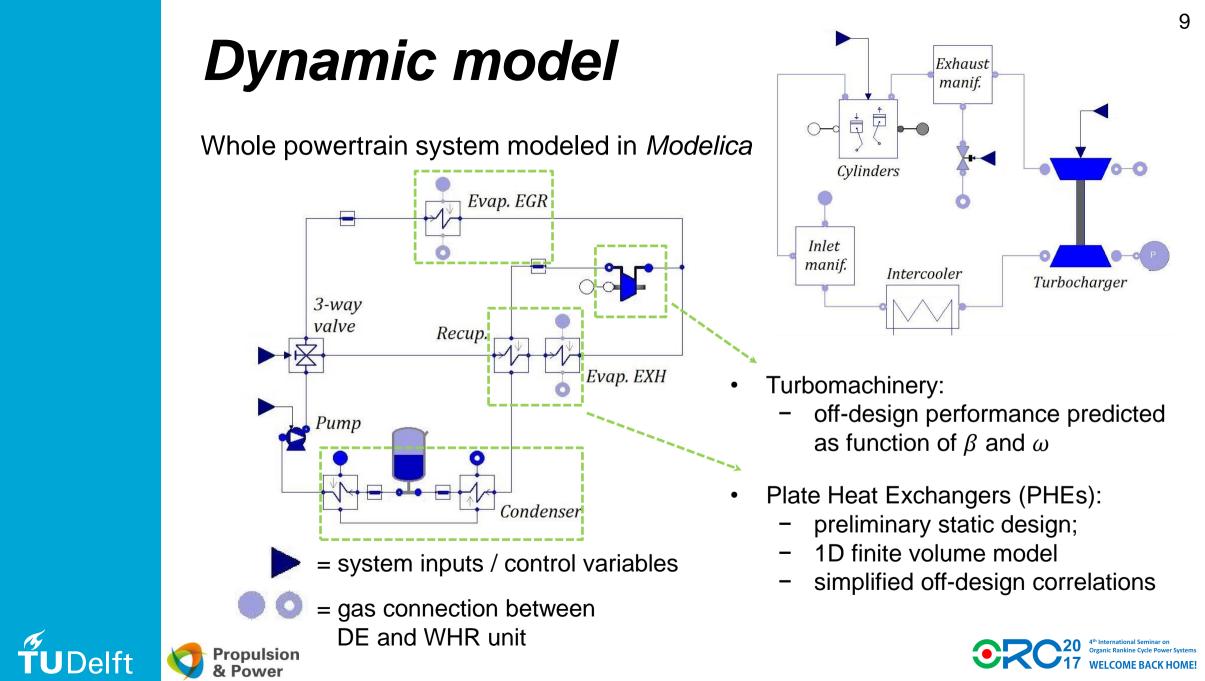

Best cycle configuration

Model assumptions and boundary conditions

$\dot{m}_{ m EXH}$	0.131	kg/s
$\dot{m}_{ m EGR}$	0.066	kg/s
$T_{\rm EGR}$	400	°C
$T_{\rm EXH,up}$	314	°C
T _{EXH,down}	265	°C
$\eta_{ m is,pump}$	65	%
$\Delta P/P$	0.01	—

Optimization results

Source	$\dot{W}_{ m mec}$ kW	\dot{Q}_{EXH} kW	$\dot{Q}_{ m EGR}$ kW	p _{eva} bar	ΔT _{sh} °C	$\eta_{ m is,turb}$ %
EGR + EXH _{up}	4.8	15.6	20.7	12.6	21.5	71.5
EGR + EXH _{down}	4.0	21.2	20.7	6.4	6.5	74.7
EXH _{down}	2.0	22.3	—	6.4	8.6	72.3



Dynamic modelling & control

Control objectives

<u>Control objectives \rightarrow > 5</u>

- 1. max(\dot{W}_{ORC})
- 2. $T_{\text{max,ORC}} < 300^{\circ}\text{C}$
- 3. $T_{\min,EXH} > 200^{\circ}C$
- 4. $\Delta T_{\rm sh} > 5^{\circ} \rm C$
- 5. cavitation, limit on p_{max}

<u>Control variables \rightarrow 2</u>

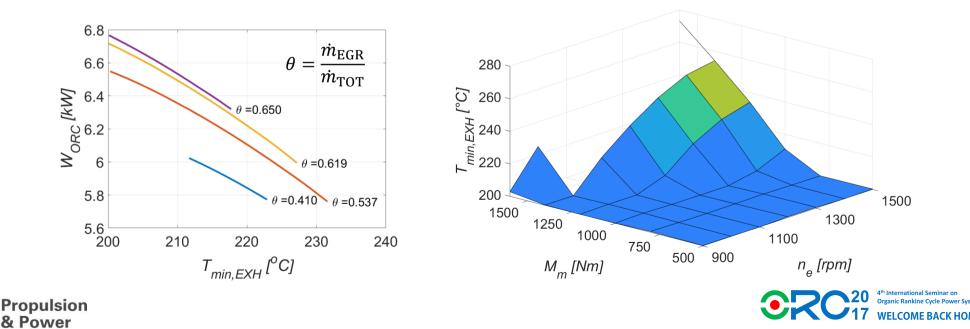
- 1. evaporators split
- 2. pump speed

nr. objectives > nr. degree of freedom

...but..

Set points optimization

Primary requirements:


- SCR safe operation
- organic fluid stability

Controlled variables:

• $T_{\min,\text{EXH}}$

• $\Delta T_{\rm sh}$

Set-points constrained optimization

Control architecture

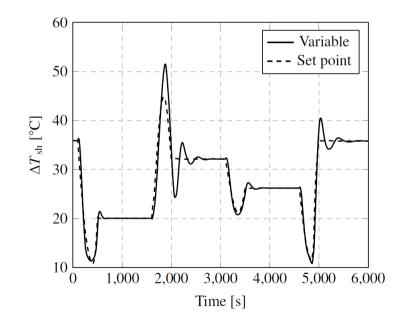
2 x 2 MIMO system

<u>Relative Gain Array Λ matrix based on</u>

 → process transfer function matrix G(s), to quantify mutual interaction

process

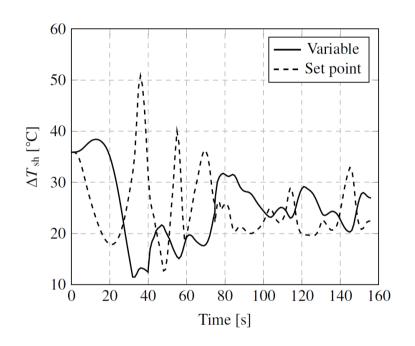
controllers


Control limitations

Multivariable Right-Half-Plane transmission zeros analysis: **process is non-minimum phase** → result of system design

Jelfi

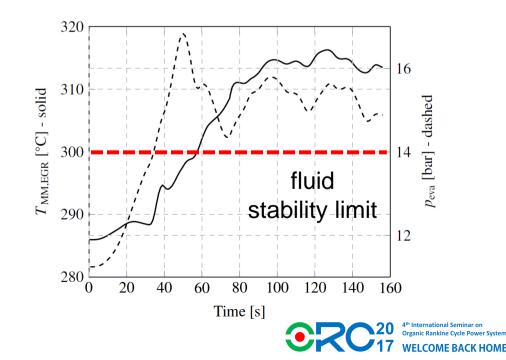
limitation on bandwidth for stability reason, $\omega_{c,max} = 0.01 \text{ rad/s}$



"Ideal" driving cycle = slow ramps

→ good performance when system stressed at $\omega < \omega_{c,max}$

"Real" drive cycle

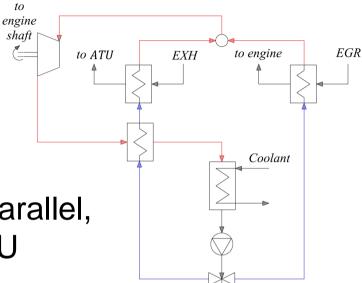


 $T_{\rm MM} > 300^{\circ} \text{C} = T_{\rm MM,max}$

→ primary control objective not satisfied

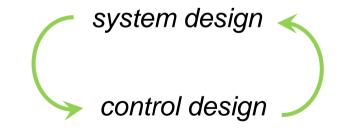
"Real" driving cycle = fast ramps

→ poor performance when system stressed at $\omega > \omega_{c,max}$ (disturbance faster than process!)



Propulsion & Power

Delft


Conclusions

- ORC power output at cruise speed 1. is $4.8 \text{ kW} \rightarrow$ roughly 5% of fuel saving
- Best configuration: two evaporators in parallel, 2. exhaust gas cooling upstream of the ATU
- 3. Simple PI-based control system not safe
 - review of process design \rightarrow change of system dynamics
 - adoption of more sophisticated • control system

to

 \rightarrow

Thank you for your attention!

