ORC 2017 Conference Milan, Italy

Public Service of Colorado Ponnequin Wind Farm

A Non-condensing Thermal Compression Power Generation System B.P. McGrail, J.J. Jenks, R.K. Motkuri, N.R. Phillips, T.G. Veldman, and B.Q. Roberts Pacific Northwest National Laboratory

W. P. Abrams, Rockwell-Collins

Deploying New Materials in Challenging Applications

- Diesel gensets deployed on Navy ships and at FOBs use only 1/3 of the energy content of the fuel – the rest is rejected as heat to the environment
- Low temperature geothermal resources are much more geographically disperse and represent a large virtually untapped energy resource estimated at 1.6 GW_e
- New nanostructured materials provide opportunity for stepchange in size, weight, and efficiency in thermal energy conversion

Ship Service Diesel Generator on U.S. Training Ship *Golden Bear*

Metal Organic Framework Materials

- MOFs are hybrid crystalline porous solids
- The properties of MOFs are easier to tune synthetically than those of other porous compounds
- The MOF structures are controllable by the choice of molecular building blocks
- Thermally stable up to 300°C and sometimes higher
- Possess much higher specific surface area (>8,000 m²/g) than possible in any other traditional crystalline material

Standard ORC System

- Cycle efficiency typically <10%</p>
- Large condenser and evaporator components
- Significant parasitic loss and cost of high pressure pump
- Air cooled system suffers from rapid decline in power output with increasing ambient temperature

Adsorption Cooling to the Rescue?

Same thermal compressor system design for cooling can be used to produce power

Hybrid Adsorption Recuperative Power Cycle (HARP)

6

- Adsorption modules replace evaporator, condenser, and high pressure pump
- Refrigerant is never physically condensed as a bulk liquid in the cycle
- By avoiding bulk liquid condensation, pressure and temperature of the working fluid exiting the engine can be reduced producing 40% more power
- Elimination of high pressure pump reduces system cost and parasitic losses

$$P = \eta_{e}\dot{m}_{r}(h_{r}^{1} - h_{r}^{o})$$

$$(1 - \eta_{h}) \Big[\dot{m}_{r}\Delta H_{a}t_{c} + (m_{Al}c_{p}^{Al} + m_{s}c_{p}^{s} + m_{v}c_{p}^{v})(T_{h} - T_{L})\Big] = \dot{m}_{w}(h_{w}^{1} - h_{w}^{o})$$

$$m_{s} = \frac{\dot{m}_{r}}{f_{r}}t_{c}$$
Pacific Northwest

Pacific Northwest NATIONAL LABORATORY

McGrail, B.P., J.J. Jenks, R.K. Motkuri, W.P. Abrams, and P. Roege. 2016. U.S. Patent Application No. 62/355,292.

Sorbent Development

R134a uptake (Wt%)

COF-3 DF-4 250 COF4-BCOF 15 C $\rho_v = 32.2 \text{ kg/m}^3$ MIL-101 200 150 COF-5 R1, Wt% 100 $\rho_1 = 1311 \text{ kg/m}^3$ COF-7 $\rho_a = 1260 \text{ kg/m}^3!$ 0 0.1 0.2 0.3 Pressure. (P/Po)

- Superfluorophilic properties generate near liquid density in sorbent pore network while well under the vapor dome of the refrigerant
- Higher working capacity achieved by combined pressure-temperature swing in cycle
- Intensive screening of MOFs and COFs has identify superfluorophilic sorbents that can be manufactured at reasonable cost (<\$80/kg)</p>
- Both mass and volumetric loading as well as adsorption kinetics are important properties for system design

Single Tube Compression Tests

R134a Thermal Compression Cycles

120

Proudly Operated by Battelle Since 1965 ——R134a Temperature

Cycles demonstrate the power of adsorption compression – over 20X more pressure than heating without sorbent!

3D Printing Enables Unique Shell/Tube Heat Exchanger Design

- Easily scalable from single tube to large diameter shell/tube design capable of MW scale output
- Control of porous inner tube permeability most significant challenge
- Lack of ASTM standards dictate inhouse pressure testing to establish safe pressure rating for each design iteration

Prototype System Components

HARP System Assembly

Thermal Compressor Testing

Proudly Operated by Baffelle Since 1965

Average mass flow will produce over 5 $\rm kW_{e}$ for this subscale design

Cost Breakdown of Thermal Compressor

Part	QTY		14 kW	QTY	58 kW	58 kW
						(optimum)
Extruded	2	276	\$6,000.00	1,104	\$24,000.00	\$16,800.00
Tubes						
Baffels		28	\$1,000.00	112	\$4,000.00	\$2,800.00
Endplates		8	\$2,000.00	32	\$8,000.00	\$5,600.00
Shells		4	\$2,500.00	16	\$10,000.00	\$7,000.00
Dip Braze		4	\$7,000.00	16	\$28,000.00	\$19,600.00
Labor			\$27,750.00		\$111,000.00	\$77,700.00
	Subtotal		\$40,250.00		\$185,000.00	\$129,500.00
Sorbent	8	0 L	\$16,800.00	320 L	\$67,200.00	\$47,040.00
	Cost/kg		\$300	density	700 kg/m ³	
Refrigerant Valves		4	\$4,000.00	4	\$4,000.00	\$4,000.00
HX Valves		8	\$2,400.00	8	\$2,400.00	\$2,400.00
Ancillary valves		4	\$400.00	4	\$400.00	\$400.00
	Subtotal		\$6,800.00		\$6,800.00	\$6,800.00
Radiator		1	\$500.00	1	\$2,000.00	\$2,000.00
HX Pump		1	\$1,000.00	1	\$4,000.00	\$4,000.00
Tube/Fittings			\$500.00		\$2,000.00	\$2,000.00
	subtotal		\$2,000.00		\$8,000.00	\$8,000.00
	TOTAL		\$65,850.00		\$267,000.00	\$191,340.00

LCOE Analysis

Pacific Northwest NATIONAL LABORATORY Proudly Oberated by Battelle Since 1965

- 1st Generation LCOE analysis updated based on actual performance data generated in TCTF and based on hard quotations for our initial HARP development unit
- Nth unit cost estimates provided for unit in commercial production under assumed progress factor of 0.8 to 0.9
- Estimated LCOE shows potential for very attractive power generation cost

Cost Estimate based on PNNL Single Unit (one-off) and Production Model

EES MODEL PARAMETERS	UNIT	HARP
Number of expanders	Units	4
Heat consumption Net electric power	kW kW	273 58
Annual operating hours	hours	8,300
Net electricity production	kWh	481,400

BUDGET PARAMETERS	UNIT	POWERPACK
Period of depreciation	Years	10
Annual insurance cost	\$	1,059
Annual service cost	\$	5,000
Straight Line Depreciation*	\$	(2,477.00)

BUDGET PARAMETERS	UNIT	1st Gen
CraftEngine™ System (incl. additional power cost)	\$	48,000
Thermal Compressor	\$	191,340
Site Installation	\$	19,000
Total profit (20% OH and G&A20%EBIT)	\$	39,360
Net investment cost	\$	297,700
BUDGET PARAMETERS UNIT	1st Gen	Production

\$/kWh

0.0744

Production cost per kWh

15

0.0486

Conclusion

- New nanomaterials have enabled a practical new power generation technology
- System operates with non-toxic, standard fluorocarbon refrigerants and commercially available ORC expander units
- Easily configurable to CCHP system with balance of plant using proven commercial off the components that reduce cost, improve reliability, and enables more rapid commercialization
- High conversion efficiency and simple design suggest very attractive LCOE for commercial production units
- Next Steps
 - Extended duration thermal compressor tests
 - Integration with Viking CraftEngine
 - Demonstration system installed on Navy ship (Summer 2018)

