

alessio.suman@unife.it
<u> saverio.randi@unife.it</u>
nicola.casari@unife.it
michele.pinelli@unife.it
Energeticamente Rinnovabili s.r.l

Experimental and numerical characterization of an oil-free scroll expander

Milan, September 15, 2017

4th International seminar on ORC Power Systems

Landelle, Arnaud, et al. "Organic Rankine cycle design and performance comparison based on experimental database." Applied Energy (2017).

Landelle, Arnaud, et al. "Organic Rankine cycle design and performance comparison based on experimental database." Applied Energy (2017).

Landelle, Arnaud, et al. "Organic Rankine cycle design and performance comparison based on experimental database." Applied Energy (2017).

Scroll Expander

Usually P_{el} < 2 kW

2005 2005-2010 2010-2015

2015

Researchers	Expander type	Working fluids	Isentropic efficiency (%)	Power [kW]	Rotate speed [rpm]	Pressure ratio
Yamamoto et al. [150]	Radial-inflow turbine	R123	48	0.15	17,000	-
Nguyen et al. [151]	Radial-inflow turbine	<i>n</i> -pentane	49.8	1.44	65,000	3.45
Yagoub et al. [152]	Radial-inflow	HFE-301	85	1.50	60,000	1.1
	turbine	<i>n</i> -pentane	40	1.50	60,000	1.3
Inoue et al. [153]	Radial-inflow turbine	TFE	70–85	5-10	15,000-30,000	4.8
Kang [154]	Radial-inflow turbine	R245fa	78.7	32.7	63,000	4.11
Pei et al. [155]	Radial-inflow turbine	R123	65	1.36	24,000	5.2
Li et al. [156]	Radial-inflow turbine	R123	68	2.40	40,000	6.3
 Zanelli and Favrat [157] 	Scroll expander	R134a	63-65	1-3.5	2400-3600	2.4-4.0
Mathias et al. [158]	Scroll expander	R123	67, 81,	1.2,1.38,	3670	8.8,5.5,3.1
			83	1.75		
Peterson et al. [159]	Scroll expander	R123	45-50	0.14-0.24	600-1400	3.28-3.87
Wang et al. [88]	Scroll expander	R134a	70–77	0.5-0.8	1015-3670	2.65-4.84
Saitoh et al. [160]	Scroll expander	R113	65	0-0.46	1800-4800	-
Kim et al. [161]	Scroll expander	Water	33.8	11-12	1000-1400	10.54-11.5
Manolakos et al. [162]	Scroll expander	R134a	10-65	0.35-2	300-390	-
Lemort et al. [86,87]	Scroll expander	R123	42.5-67	0.4-1.8	1771-2660	2.75-5.4
	Scroll expander	R245fa	45-71	0.2-2	-	2-5.7
Guangbin et al. [163]	Scroll expander	Air	-	0.4-1.1	1740-2340	3.66
Wang et al. [164]	Screw expander	Air	26-40	0.5-3	400-2900	-
Smith et al. [165]	Screw expander	R113	48-76	6-15.5	1300-3600	2.11
Baek et al. [166]	Reciprocating piston expander	CO ₂	10.5	24.35	114	2.1
Zhang et al. [167]	Reciprocating piston expander	CO ₂	62	-	306	2.4
Mohd et al. [101]	Rotary vane	R245fa	43-48	0.025-0.	2200-3000	21.54-24.1
	expander			032		7
Yang et al. [102]	Rotary vane expander	CO ₂	17.8–23	-	300-1500	-
Qiu et al. [168]	Rotary vane	HFE7000	52.88-55.	1.66-1.7	841-860	2.063-2.09
	expander		45	2		5

Bao, J., Zhao, L., "A review of working fluid and expander selections for organic Rankine cycle", *Renewable and Sustainable Energy Reviews* (2013).

Nominal power	5.5 kW
Volume ratio	3.5
Displacement	73,000 mm ³ /rev
Rotational velocity	2600 rpm (MAX)
Flank gaps	20 – 100 µm

Stator

Rotor

Pressure Transducers (± 0.5 % FS) Temperature (A-class Pt100 probes) Mass flow (± 1.8 % FS) Load Cell (± 0.05 % FS) Rotational speed DAQ (± 1 K, ± 1 % R)

Operating conditions:

- > Air
- \succ p_{IN}: 7.5 bar
- ≻ T_{IN}: 292.15 K
- ➢ N: 400 rpm − 2400 rpm

 $\mathsf{Quality} > 0.2$

Two independent grids are used to discretize the computational domain

Moving grid has to:

- Follow the domain geometry modification by means of a rigid body motion
- Exchange information with fixed grid by means of several local "interfaces" (donor and acceptor cells)

To establish the connectivity between the grids, a two-step Overset Assembly process takes place:

- 1- Hole-cutting, which determines which cells are active, inactive, or acceptor cells
- 2- Donor Search, which ensures that donor cells are found for each acceptor cell

In a scroll machine, this process is <u>not</u> trivial!

The **element quality** in the **gaps** is **completely defined**

(after the grid generation, each cells remains the same)

The **grid morphology** remains the **same**

(no element deformation is needed)

<u>Matching</u> between the Background and overset grid is <u>critical</u> (5 elements with similar size at least)

<u>**Two</u>** numerical domains at least (background + overset) (each moving object needs its overset grid)</u>

- Siemens STAR-CCM+ 11.02
- Flow: Compressible, 3D
- Gas: Air as a real gas
- Real gas model: Redlich-Kwong
- Turbulence model: 2^{nd} order Realizable k- ϵ , two-layer y⁺ wall treatment
- Temporal discretization: 1^{st} order, $5 \cdot 10^{-6}s$ time-step
- Boundary conditions:
 - Inlet pressure: 7,5 *bar*
 - Inlet temperature: 292,15 K
 - Outlet pressure: 1,01 *bar*
 - Walls thermal specification: adiabatic.

Which machine is suitable for actual operating conditions?

Quoilin et al. "Working fluid selection and operating maps for Organic Rankine Cycle expansion machines." *Purdue*. 2012.

- Siemens Star-CCM+ 11.02
- Compressible, 3D, Finite Volume Solver
- Temporal discretization: 1st order, 1 · 10⁻⁶s time-step
- Gas: R134a +
- Real gas model: Redlich-Kwong
- Turbulence model: 2^{nd} order Realizable k- ε , two-layer y^+ wall treatment
- Boundary conditions:
 - Inlet pressure: 13,9 bar ←
 - Inlet temperature: 338 *K*
 - Outlet pressure: 4,00 bar
 - Walls thermal specification: adiabatic.

- CFD analysis was able to capture flow and torque trends, while calculated values showed a certain deviation when compared to the measured ones
 - → Great influence of gaps and their modeling
 - Better results can be obtained by reducing gaps width in the model
 Greater computational effort
- CFD analysis showed fluctuations in the output torque and volume flow for the real gas expansion case

Vibrations and noise are critical for household equipment

Future development

• Numerical simulations of the pump

• Expander and pump performance for different working fluids (current issue)

• Study of different types of expanders as cycle components

→ Single-screw expander

Thank you

4th International seminar on ORC Power Systems

