International Seminar on ORC POWER SYSTEMS

4th

Strategies for the optimization of a WHR ORC system

A. Baccioli, M. Antonelli

Department of Energy, System, Construction and Territory Engineering (D.E.S.T.eC.)

University of Pisa, Pisa, Italy

Introduction: Small scale Waste Heat Recovery

Optimization of the system:

Waste heat recovery system often characterized by fluctuations of mass flow rate and temperature;

Introduction: Small scale Waste Heat Recovery

Optimization of the system:

Waste heat recovery system often characterized by fluctuations of mass flow rate and temperature;

Introduction: Small scale Waste Heat Recovery

In the literature:

- Definition of control strategy (steady-state analysis);
- Definition of control strategy (transient-analysis)

General requirement:

Easy measurable control variables;

Aim of the work

Aim of the study:

- Create a transient model of a small scale WHR-ORC;
- Compare various control strategies;
- Define an optimal control strategy;
- Define easy measurable control variables;

Methodology and System Layout

- Expander: rotary
 volumetric expander
 (from Wankel engine);
- Recovery from hot gas (T<200°C): direct exchange;
- By-pass valve of the evaporator;
- R-600a: Working Fluid;
- ➢ FWH modality;

Methodology: Expander

Main driving parameters:

- Displacement:
- Dead space grade $\mu = V_1/(V_3-V_1) = 8\%$
- Introduction grade $\sigma = (V_2 V_1) / (V_3 V_1) = 20\%$
- Expansion grade $\epsilon = V3/V2; = 3.86$
- Recompression grade $\gamma = (V_5 V_6)/(V_3 V_1) = 10\%$

316cc

Methodology: Numerical Model

Numerical model realized in AMESim

Expander maps from a numerical model validated with experimental data

Evaporator: discretized in various nodes (finite volume).

Heat exchange coefficient determined directly evaluated by the code (builtin correlations).

Condenser: simplified model (two-phase chamber with imposed temperature)

Methodology: Control strategy and control system

Control strategy:

- Sliding-Pressure (constant expander speed);
- Sliding-Velocity (constant evaporating. Temperature): inverter required;
- Combined: inverter required;

Control Loops:

Methodology: Control strategy and control system

Control strategy:

- Sliding-Pressure (constant expander speed);
- Sliding-Velocity (constant evaporating. Temperature): inverter required;
- Combined: inverter required;

Control Loops:

Methodology: Boundary Conditions

Load diagram defined by variations both of temperature and mass flow rate

Simplification: constant condensing temperature (35°C).

Methodology: Combined Strategy

A function of at least two variables (three if condensing temperature is not constant) is required;

Function evaluated from system simulation in steady-state conditions, by maximizing the work output;

Methodology: Combined Strategy

General issue: the heat source mass flow rate can be hardly measurable;

A different quantity might be more suitable to drive the evaporating temperature;

The product $\dot{V} \cdot \Delta P_{EXP}$ related to the expander work output and univocally defined;

For constant condensing temperature, the function became $\dot{V} \cdot P_{Adm}$: due to pressure drop $P_{Adm} \neq P_{Sat}$

Results: Sliding Pressure/Sliding Velocity

		Sliding Pressure [2500 rpm]	Sliding Velocity [T _{ev} =100°C]
Average Net Output	[kW]	9.77	9.81
Average ORC Efficiency	[%]	10.51	11.73
Average Recovery Efficiency	[%]	60.46	54.41
Average Overall Efficiency	[%]	6.35	6.38

Sliding Pressure: variation of evaporating temperature

Sliding Velocity: evaporating temperature and exp. speed

Results: Combined strategy

Results: Comparison of the strategies

		Sliding Pressure [2500 rpm]	Sliding Velocity [T _{ev} =100°C]	Combined
Average Net Output	[kW]	9.77	9.81	9.93
Average ORC Efficiency	[%]	10.51	11.73	9.92
Average Recovery Efficiency	[%]	60.46	54.41	65.11
Average Overall Efficiency	[%]	6.35	6.38	6.46

Combined strategy did not required to determine a-priori an optimal value of sliding pressure and sliding velocity;

The value of the work output however is not so much higher than that of the two other strategies: dynamic effects.

Results: Step Response

Temperature of the heat source increased from 150°C to 180°C at t=40s

Due to system inertia the evaporating temperature did not manage perfectly following the set point;

The optimal value of the set point in transient conditions differs from steadystate

A dynamic optimization of the system is required to achieve better results.

Conclusion

- Control strategies for WHR ORC have been pointed out;
- An optimization has been carried out;
- A new control variable $\dot{V} \cdot \Delta P_{EXP}$ has been tested to drive the evaporating temperature of the ORC;
- For each temperature and mass flow rate of the heat source the variable is univocally defined and easily measurable;
- The control loop was explicitly solved.
- The set point driving function was defined in steady-state conditions;

Further developments

Experimental tests are needed to verify the actual feasibility of this choice.

Possible problems:

- The small entity of the pressure drop;
- Noise in the pressure values;

Thank you!

