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Introduction: Small scale Waste Heat Recovery

Optimization of the system:

System
architecture

Working Fluid

Expander and Control and
Heat Exchangers Management

Waste heat recovery system often characterized by fluctuations
rate and temperature;
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Introduction: Small scale Waste Heat Recovery

Optimization of the system:

System

Working Flui i
orking Fluid architecture

Expander and
Heat Exchangers
Optimization

Control and
Management

Waste heat recovery system often characterized by fluctuations of mass flow
rate and temperature;
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Introduction: Small scale Waste Heat Recovery

Flexibility

Control and Cost
Management reduction
; Efficiency

In the literature:
» Definition of control strategy (steady-state analysis);

» Definition of control strategy (transient-analysis)

General requirement:

» Easy measurable control variables;
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Aim of the work

Aim of the study:

» Create a transient model of a small scale WHR-ORC;
» Compare various control strategies;
» Define an optimal control strategy;

» Define easy measurable control variables;
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Methodology and System Layout

Expander: rotary
volumetric expander
(from Wankel engine);

—AWWWWWWWWWWWWWWW—

Recovery from hot gas AWM —
(T<200°C): direct Heat Exchanger
exchange;
By-pass valve of the 2 | -

Feed Pump Expansion W
evapo rato r, device
R-600a: Working Fluid;
FWH mOdaIIty, Water cooled condenser
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Main driving parameters:
* Displacement: 316cc

* Dead space grade  p=V,/(V;-V,) = 8%

* Introduction grade 0 = (V,-V,)/ (V5-V,;) = 20%
* Expansion grade € =V3/V2; = 3.86

* Recompression grade y = (Vs-V,)/(V5-V;) = 10%
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Methodology: Numerical Model

Numerical model realized in AMESIim

Expander maps from a numerical model validated with experimental data
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Evaporator: discretized in various nodes (finite volume).

Heat exchange coefficient determined directly evaluated by the code (built-
in correlations).

Condenser: simplified model (two-phase chamber with imposed
temperature)
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Methodology: Control strategy and control system

Control strategy:

» Sliding-Pressure (constant expander speed);

» Sliding-Velocity (constant evaporating. Temperature): inverter required;

» Combined: inverter required;

Control Loops:

e e Pump ~ Evaporator || 4
Liquid level . conFt’r.(I:'uIIer ]
SetPoint | | _ - SetPoint  ————| = »
+ contfdller
—Evaporator > Voturme flow rate Expander

TOT
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Methodology: Control strategy and control system

Control strategy:

» Sliding-Pressure (constant expander speed);

» Sliding-Velocity (constant evaporating. Temperature): inverter required;

»| Combined: jnverter required;

Control Loops:

Inlet mass flow rate Pump _ Evaporator i\:::::fur:f + P I
Liquid level Set POint ‘ - Controuer
Set Point ) o f(x,y) Conuo
+ controller
L Evaporator » Volume flow rate Expander
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Methodology: Boundary Conditions

Load diagram defined by variations both of temperature and
mass flow rate
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Simplification: constant condensing temperature (35°C).
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Methodology: Combined Strategy

A function of at least two
variables (three if Pl
condensing temperature is controller| |
not constant) is required; m— -

Function evaluated from Signal

—~ Evaporator |2l

tamparatura

system simulation in

steady-state conditions, b ume flow rato
oy y i Expander

maximizing the work

output;
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Methodology: Combined Strategy

General issue: the heat source mass flow rate can be hardly measurable;

A different quantity might be more suitable to drive the evaporating
temperature;

The product V - APgyp related to the expander work output and univocally
defined;

For constant condensing temperature, the function became V - Py4,,,: due to
pressure drop Pygm # P sat

Explicit solution of the control loop
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Results: Sliding Pressure/Sliding Velocit

Sliding Pressure Sliding Velocity
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[2500 rpm] [T.,=100°C]

120

"
Ty / h
E‘ o0 i Average Net Output [kw] 9.77 9.81
31
e
‘é& Average ORC Efficiency (%] 10.51 11.73
S 80
g Eiae Recovery [9%] 60.46 54.41
g 60 —1000rpm
a ---1500rpm Average Overall
& =~ 2000rpm Efficiegncy [%] 6.35 6.38
- 2500rpm
40 ~-3000rpm

Sliding Pressure: variation of
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Sliding Velocity: evaporating temperature and exp. speed
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Results: Combined strategy
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Results: Comparison of the strategies
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Sliding Pressure  Sliding Velocity

[2560 rpm] [T,,=100°C] Combined
Average Net Output | [kW] 9.77 9.81 9.93
é\f\;fcrlaef;"ec ‘?RC [%] 10.51 11.73 9.92
By oY b o4
Ao O 6.35 6.38 6.46

Combined strategy did not required to determine a-priori an
optimal value of sliding pressure and sliding velocity;

The value of the work output however is not so much higherCL
than that of the two other strategies: dynamic effects.
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Results: Step Response

Temperature of the heat source increased from 150°C to 180°C at t=40s
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Due to system inertia the evaporating temperature did not manage perfectly
following the set point;

The optimal value of the set point in transient conditions differs from steady- Q
state

A dynamic optimization of the system is required to achieve better results.
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Conclusion
Control strategies for WHR ORC have been pointed out;

An optimization has been carried out;

A new control variable V - APgyp has been tested to drive the
evaporating temperature of the ORC;

For each temperature and mass flow rate of the heat source the
variable is univocally defined and easily measurable;

The control loop was explicitly solved.

The set point driving function was defined in steady-state
conditions;

Further developments

Experimental tests are needed to verify the actual feasibilty of this
choice.

Possible problems:

The small entity of the pressure drop;

Noise in the pressure values;
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Thank you!




