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❖ What is a micro gas turbine ?

Introduction

• Small gas turbine (<300kW)

• Distributed energy resources 

• Suitable for combined heat & power (CHP)

✓ Core components

- single-stage compressor

- single-stage turbine

- combustor

- recuperator

- generator
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❖ MGT exhaust gas heat recovery 

Introduction

Component Parameter Value

Compressor
Pressure ratio [-] 3.6

Efficiency [%] 79.0

Turbine
Inlet temperature [oC] 828.1

Efficiency [%] 84.0

Recuperator

Gas outlet temperature [oC] 276.7

Gas outlet mass flow [kg/s] 0.31

Performance
System power [kW] 28.0

Efficiency [%] 24.0

• Capstone C30

▪ The engine exhausts high temperature gas (276.7oC)

▪ Generally, the exhaust gas is used to satisfy the heat demand
but wasted when there is no heat demand

Possibility : supplementary power by adding a bottoming cycle
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▲ Performance of Capstone C30 ▲ Capstone C30
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❖ Importance of off-design performance 

▪ Increasing penetration of renewable energy

Introduction

▪ Impact of renewable energy sources

• Strong imbalance between demand &supply

• The other generators in the grid system including the MGT will 
operate at partial loads during a lot of their operating time.

Off-design performance of MGT/bottoming cycle package is 
Important

▲ Net load(normal load-renewable power generation) at California 
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▪ Comparison between ORC and tCO2 is focused on low temperature applications

• Low grade heat recovery (<160oC)
Li et al. “Thermodynamic analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for

low grade heat to power energy conversion”, Applied Thermal Engineering, August 2016

• Waste heat recovery from sCO2 cycle (~120oC)
Wang et al. “Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2

cycle waste heat recovery: A comparative study”, Applied Energy, May 2016

▪ Most of the works are interested in design performance only. 

▪ Selection of working fluid for High temperature heat source

• For recuperated GT exhaust gas heat (>350oC) (Toluene)
Cao et al. “Optimum design and thermodynamic analysis of a gas turbine and ORC combined cycle with recuperators”,Energy

Conversion and Management, May 2016

• For externally fired GT exhaust gas heat(400oC) (Toluene)
Camporeale et al. “Cycle configuration analysis and techno-economic sensitivity of biomass externally fired gas turbine with

Bottoming ORC” ,Energy Conversion and Management, November 2015

Introduction
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❖ Previous works

Manufacturer Model name
Power

output
Working fluid

Heat source 

temp.

Low 

temp.

Electratherm Green machine 6500 > 110 R245fa 77-116

GE Clean energy 125 R245fa 121

High 

temp.

Turboden TD 6 HR 600 Silicon oil 270

Triogen WB-1 170 Power 165 Toluene 350-530

▲ Specifications of commercial ORC



ORC 2017, September 13-15, Milano, Italy 

Thermal Power

System Lab

❖ Research objective

▪ Comparison of ORC and Trans-critical CO2 cycle

1. Performance at full-load condition

2. Performance at part-load condition  

Introduction
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❖ Design Modeling

▪ Organic Rankine Cycle

HRU

Turbine Generator

Condenser

Pump

Water

MGT 

exhaust gas 

(8)

Exhaust

(9)

1

24

5

T : 275.8 oC

m : 0.3089 kg/s

• Exhaust gas temperature : 100oC

• Working fluid : Toluene

• Turbine / pump efficiency : 85% / 85%

• Pinch point temperature difference in HRU : 4℃

• Condensation temperature : 25℃ (3.8 kPa)

• Turbine inlet is at saturated vapor

• Turbine inlet pressure is determined to maximize power output  6.1bar

(PR ~ 160)
8

▲ T-S diagram of ORC ▲ Configuration of ORC
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❖ Design Modeling

▪ Trans-critical CO2 Cycle

HRU

TurbineGenerator

MGT 

exhaust gas

(8)

Exhaust

(9)

Recuperator

Condenser

Water

Pump
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▲ T-S diagram of tCO2 ▲ Configuration of tCO2

• Working fluid : Carbon dioxide

• Turbine / pump efficiency  : 85% / 85%

• Pinch point temperature difference in HRU : 4℃

• Condensation temperature : 25℃ (6,470 kPa)

• A regenerator is added to increase mass flow of CO2  larger tCO2 cycle power

• Turbine inlet pressure is determined to maximize power output  235.3 bar

(PR ~ 3.6)
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❖ Off-design Modeling

▪ Part load data of MGT : exhaust gas flow and temp.

– C30 simulation data1)
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▲ Mass flow rate and exhaust temperature variation of MGT 
with MGT load fraction

1)  Min Jae Kim, Jeong Ho Kim, Tong Seop Kim, (2016). Program development and 

simulation of dynamic operation of micro gas turbines, Applied Thermal Engineering, 

Vol. 108, 2016, pp. 122-130.

Compressor map

Turbine map
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❖ Off-design Modeling

▪ Heat exchanger

( ) ,  design designUA 
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▶ Off-design analysis process

Off-design
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▶ Number of segments

• tCO2 – single segment

• ORC – two segments (economizer(preheater)/evaporator)
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❖ Off-design Modeling

▪ Turbine

,  design designY

▶ Stodola’s ellipse
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▶ Off-design analysis process
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▶ Turbine efficiency correction2)

0.1

, ,
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sin 0.5
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2)   Keeley KR. A theoretical investigation of the part-load characteristics of LP steam turbine stages. CEGB memorandum 

RD/L/ES0817/M88. Central Electrical Generating Board, UK; 1988.
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❖ Off-design Modeling

▪ Pump

▶ Performance map is used

Constant speed
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► Simulation of variable speed operation 

• tCO2

✓ Calculation process for each MGT part load condition.
• For each rotational speed, a single point that satisfies the matching 

among pump, HRU and turbine is determined.

• The calculation is repeated for every speed, and a maximum power 

points is decided  the working point for the specific MGT power. 

• ORC

✓ For each MGT part load condition
• A single rotational speed exists because turbine inlet condition is fixed 

(saturated vapor)
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Design calculation Off-design calculation

Design performance 

analysis
Off-design calculation of MGT

Calculate turbine inlet pressure, 

efficiency with Stodola’s equations

UA of heat exchanger

 Off design 

performance

No

Thermodynamic properties 

of HRU Outlet 

=Thermodynamic properties 

of turbine inlet?

Assume  :

Pump inlet mass flow

Calculate HRU’s outlet condition

(temperature)

Calculate pump outlet condition 

with performance curve

Yes

❖ Performance analysis

▪ Simulation process

14

In Seop Kim, Tong Seop Kim, Jong Jun Lee, (2017). 

Off-design performance analysis of organic Rankine 

cycle using real operation data from a heat source 

plant, Energy Conversion and Management, Vol. 133, 

Issue 1, Feb. 2017, pp. 284-29.

• Modelling validation
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❖ Performance at the design point
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▲ T-S diagram of ORC ▲ T-S diagram of tCO2 cycle
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• ORC recovers more heat at the HRU, and produces slightly larger power

• MGT exhaust heat ~ 95kW

• Bottoming cycle efficiency ~13%

• Bottoming cycles add ~45% power
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❖ Performance at the off-design points

✓ General tendency 
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• MGT load fraction

 MGT exhaust gas temp. & mass flow

 Mass flow rate of the bottoming cycle 

 Turbine inlet pressure

 Bottoming cycle power 
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▲ Variation of operating parameters of ORC

with MGT load fraction
▲ Variation of operating parameters of tCO2

with MGT load fraction
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▲ T-S diagram of ORC at 75% MGT load ▲ T-S diagram of tCO2 cycle at 75% MGT load
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❖ Performance at the off-design points

✓ Comparison of operating point changes

▪ tCO2 shows a larger drop in the gas exit temperature (T9) at the HRU
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• HRU exit gas temperature is reversed about at 75% MGT power 

 HRU heat recovery becomes larger for the tCO2 cycle

Results
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❖ Performance at the off-design points

✓ Heat recovery performance

▲ HRU hot side outlet temperature
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• Power variation with MGT power is steeper for ORC

• Power production reversed about at 75% MGT power  

Results
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▲ Variation of power output of bottoming cycles with MGT load fraction

❖ Performance at the off-design points

✓ Bottoming cycle power
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❖Design performance of an ORC using toluene and  a recuperated  
tCO2 was compared: ORC produces slightly larger power (5.5%).

❖An operation simulation tool has been set up using off-design 
models for components (pump, HRU and turbine), and operation 
strategy was provided. 

❖ The reduction rate of the heat recovery performance of the ORC is 
larger in comparison to tCO2; tCO2 produces more power in the 
MGT power range less than 75%. 

❖A suitable system (ORC or tCO2) should be selected considering 
the operating environment (near full load or mostly at part loads). 
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Thank you.
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