

Method for designing WHRS in vehicles considering optimal control

Philipp Petr, Wilhelm Tegethoff, Jürgen Köhler

4. International Seminar on ORC Power Systems

Simulation

fast and robust dynamic simulation models of thermal components and systems

Customized Software

for model based development of thermal and other systems, visualization and model analysis

Test Benches

TLK-Thermo GmbH

Design and development of testing concepts, measurement services

Longitudinal Dynamics and Thermal Systems Model of an Omnibus

Transient Characteristics of the Exhaust Gas Flow in the WHVC

Exergetic Weighting of Occuring Exhaust Gas Temperatures

Considered Rankine Cycle Base Configuration

Developed Method

Distribution of Optimum Control Values for Various Component Efficiencies

Investigation of 2800 cycle characteristics per working fluid

Exhaust Gas Temperature in °C

Proposed Method

Online Computation of Optimal Operation Points and Control Values

Dynamic Evaporator Model

Sophisticated counterflow heat exchanger Modelica model based on TIL and TILMedia Library

Two Heat Exchanger Snapshots

Results of Measure "Reduced Tube Cross Sectional Area for Liquid Phase"

Evaluation of Optimized Process Control and Components in Virtual Test Drives

Conclusion

- 1. High benefit of optimizing process control
- 2. Significant shift of optimal operating points with change in component losses
- 3. Need for considering varying operating points in the design stage
- 4. Development of method and software tool chain for model based design

I am pleased to answer your questions!

Philipp Petr p.petr@tlk-thermo.com E.

TLK-Thermo GmbH Hans-Sommer-Str. 5 38106 Braunschweig www.tlk-thermo.de

Tel.: +49/531/390 76 - 260 Fax: +49/531/390 76 - 29

Influence of Process Control on Exergetic Efficiency

17

Predicted Working Fluid Mass and Volume Flow Rates in the WHVC

Average Exergetic Efficiencies of WHRS with Static Process Control

Results of Virtual Test Drive

Evaluation of different working fluids

Sehr guter Expander: $\eta_{Expander,isen} = 0.75$, $\eta_{Pumpe,isen} = 0.5$, $\Delta T_{Pinch} = 20 \text{ K}$, $\eta_{Interner WU} = 0.8$, $\Delta p_{WU} = 0.5 \text{ bar}$

Control Concept for the Rankine Process

Extent of Parameter Sensitivity Analysis

Parameter	Values
Ŋ Expander	$\{1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4\}$
Ŋ _{IHX}	{1, 0.8}
$\Delta p_{WF,HX}$	{0, 1 bar}
Ŋ Pump	$\{1, 0.75, 0.50, 0.25\}$
ΔT_{PP}	{0, 10, 20, 30 K}
T _{Condensing}	{20, 40, 60, 80, 100 °C}
N Optimization Problems	226.240 (per Working Fluid)

Influence on single parameters on the exergetic efficiency of the process

Two Process Snapshots

