HIGH TEMPERATURE ORC SYSTEMS

Riccardo Vescovo Sales & Business Development Leader

Milan, 14 September 2017

AGENDA

- STATE OF THE ART ORC SYSTEMS
- VERY HIGH TEMPERATURE ORC SYSTEMS
- APPLICATIONS OF VERY HIGH TEMPERATURE ORC SYSTEMS
- STEAM & POWER ORC ST&P ORC

CONCLUSIONS

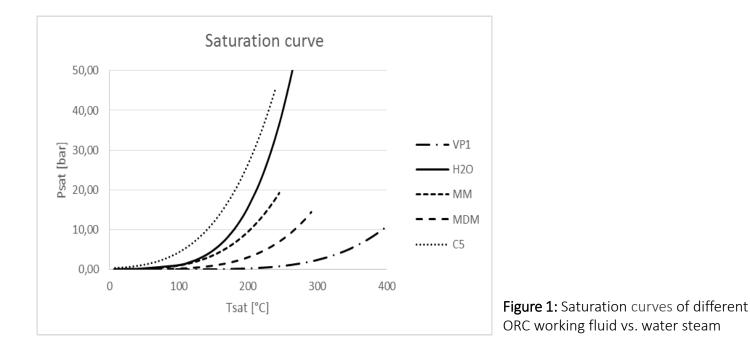
STATE OF THE ART ORC SYSTEMS

- Most of the commercially available ORC systems use as working fluids Hydrocarbons, Siloxanes and Refrigerants [1]
- Typically Hydrocarbons and Siloxane are used to exploit Medium and High Temperature heat source applications [1]
- High Temperature ORC systems are used in Biomass, Heat Recovery and Waste to Energy applications at maximum working fluid temperature below 300 °C

Working Fluid	Max Operating Temperature [°C]	Evaporation Temperature Range [°C]	Condensation temperature Range [°C]
Octamethyltrisiloxane (MDM)	290	250 - 280	80 - 150
Hexamethyldisiloxane (MM)	290	180 - 250	30 - 60
Cyclopentane	300	200 - 230	> 0

Table 1. Common use working fluid for MT and HT heat source ORC application

Table 2. Typical Performances of medium and high temperature ORC cycles.


	Electrical	Electrical efficiency		
	Heat Source	Temperature	Heat Source Temperature	
	HT / VHT	MT	HT / VHT	MT
Power only	25 - 28 %	20-22 %	0 %	0 %
LT CHP	20-22 %	15 – 18 %	77 – 79 %	81 - 84 %
MT CHP	15-18 %	12-15 %	81 - 84 %	84 - 87 %

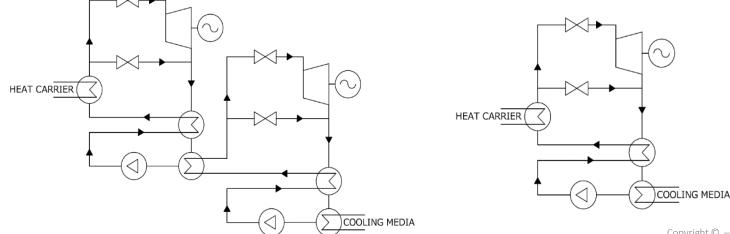
HT: High Temperature (> 250 °C and < 500 °C) **VHT**: Very High Temperature (> 500 °C)

VERY HIGH TEMPERATURE ORC SYSTEMS

- Potential Organic fluids stable above 300 °C : toluene, biphenyl, diphenyl oxide, terphenil, quadriphenil, linear hydrocarbons, alkylated aromatic hydrocarbons, phenilcycloesane, bicyclohexyl, perfluoropolyether
- Turboden identified the mixture diphenyl diphenyl oxide as the most promising working fluid

Table 3. Diphen	vl and dipheny	l oxide mixture	working temp	erature ranges

Working Fluid	Max Operating Temperature [°C]	Evaporation Temperature Range [°C]	Condensation temperature Range [°C]
Diphenyl - Diphenyl oxide mixture	400	390 - 350	250 - 160



APPLICATIONS OF VERY HIGH TEMPERATURE ORC SYSTEMS

- There are many studies on ORC system operating above 300 °C reporting theoretical **very high** efficiencies, improved heat source utilizations and enlarged range of application [2]-[4]
- **Considering** diphenyl diphenyl oxide as working fluid and its saturation curve [5]:
 - In **Power Only Configuration** a cascade cycle must be employed, achieving a gross efficiency > 30%
 - A CHP configuration can be done assuming a cooling sink above 150 °C

	Electrical efficiency	Thermal efficiency
	VHT heat source	VHT heat source
Power only	30-34 %	0 %
HT CHP	15 - 20 %	79 – 84 %

Table 4. Indicative Performances of Very High temperature ORC cycles.

Copyright © – Turboden S.p.A. All rights reserved

A CHP SOLUTION WITH STEAM GENERATION FOR THE INDUSTRY

- **Power only solutions** could be of interest only for where primary fuel cost is relatively low and energy value is relatively high. This configuration is **not the subject of this study**
- Many manufacturing facilities require large amount of electricity and valuable heat sources as medium pressure steam [6]: the CHP configuration with Steam Generation is the subject of this study
- Most interesting Industries with large steam demand are [6]
 - Pulp & Paper
 - Chemical and Pharmaceutical
 - Food & Beverage
 - Textile

		Capacity range	Average Electricity	Average Steam	Ratio
		[ktons/year]	[MWe]	[MWt]	[MWt]/[MWe]
Paper	Specialties	6-948	8,9	16,7	1,9
Paper	Packaging	10-1214	18,5	42	2,3
Paper	Tissue	8-1115	10,4	18,7	1,8
Chemical	Organic Chemical	1-420	5,4	55,5	10,3
Chemical	Petrochemical	20-1100	8,2	44,7	5,5
Chemical	Plastic materials and Resins	20-430	2,6	13	5,0
Food & Bev	Sugar	42-546	7,7	46,2	6,0
Food & Bev	Diary	20-720	3,3	11,8	3,6
Food & Bev	Oils	0,4-150	9,9	14,3	1,4

TECHNOLOGY BENCHMARK

- Different natural gas fired CHP systems are available on the market, with specific characteristics in terms of electric and thermal production, temperature levels and efficiencies
- Steam & Power (ST&P) ORC is a Very High Temperature ORC system developed by Turboden combined with a natural gas fired thermal oil boiler

CHP system		RE	GT	CP-SRC	ST&P
$\eta_{el}{}^1$	%	44%	27%	8% ²	16% ³
Electrical output	MW	2,0	1,85	1,8	2,1
% captive consumption ⁴	%	3%	5%	5%	8%
$\eta_{ m th}$	%	18%	55%	84%	76%
η_{I}	%	64%	82%	92%	92%
η_{II}	%	52%	47%	38%	43%

Table 6. CHP system efficiency parameter for a 2 MW unit. Performance based on OEM datasheet and Poyry market study [6]

Heat]	Media:	12 b	ar(g)	Feed	water	return	temperature at	90°C
i icut i	mound.	120	un (g).	i ccu	water	return	temperature at	<i>J</i> 0 C

For RE: jacked water was considered as a loss

RE: Reciprocating Engines

GT: Gas Turbine

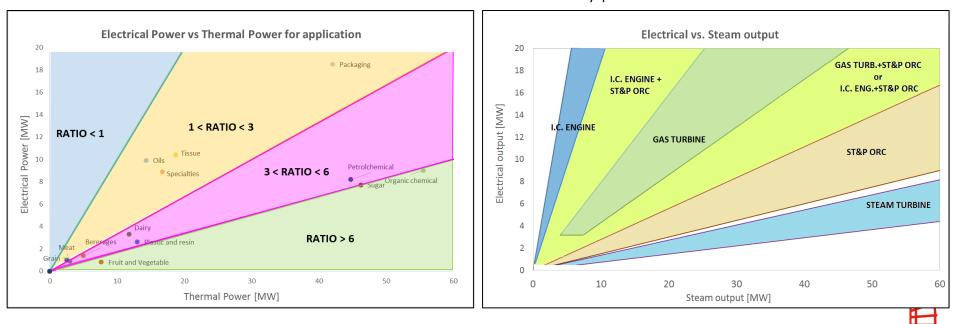
CP-SRC: Counter Pressure Steam Rankine Cycle

ST&P: Steam & Power ORC

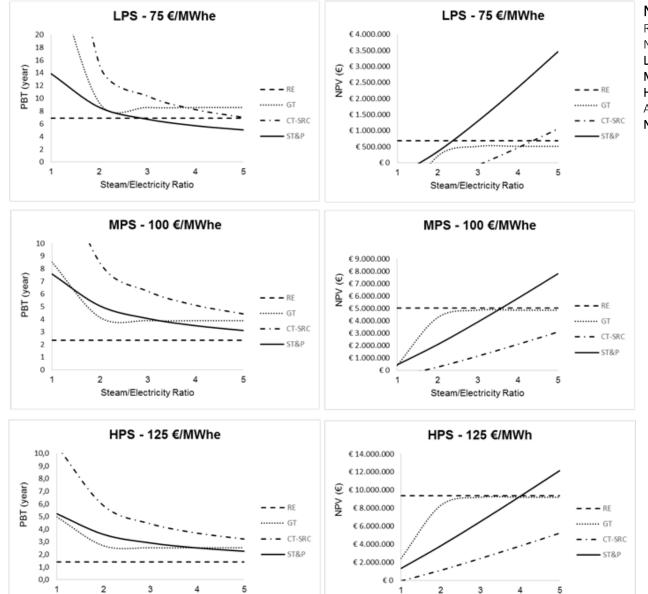
¹ Gross electrical efficiency

 2 Considering steam generation at 50 bar 400 °C

 3 ORC efficiencies as per Table 4 multiplied by thermal oil boiler efficiency equal to 90%


⁴ On gross electric output

STEAM TO ELECTRICITY RATIO: PROCESS AND TECHNOLOGY BENCHMARK


Steam to Electricity ratio: it's the ratio between the energy <u>required</u> (or <u>generated</u>) in the form of steam divided by the energy <u>required</u> (or <u>generated</u>) in form of electricity

- <u>Required</u>: each manufacturing facility has specific energy requirements in terms of steam and electricity requirements (e.g. yearly consumptions, average values, etc.)
- <u>Generated</u>: each CHP technology (e.g. reciprocating engines, gas turbines,
 Steam&Power ORC, etc.) has its own specific
 production characteristics in terms of steam and electricity productions

ECONOMICS: FEASIBILITY STUDY

Steam/Electricity Ratio

Steam/Electricity Ratio

Notes and assumptions:

Reference Electric Power Output: **3 MWe** (or lower) Natural Gas Price: **25** €/MWh **LPS**: Low electricity Price Scenario, **75** €/MWh **MPS**: Medium electricity Price Scenario, **100** €/MWh **HPS**: High electricity Price Scenario, **125** €/MWh Actualization Rate: **3% NPV:** @ 10 years

CONCLUSIONS

- Commercially available ORC units use maximum working fluid temperature below 300 °C,
- Exceeding this limit is possible with the proper working fluids and
- It Allows to design a High Temperate CHP unit generating medium pressure steam from natural gas (and other primary energy sources), called Steam & Power ORC – ST&P ORC
- ST&P ORC can be employed in many steam-demanding manufacturing processes
- ST&P ORC has a characteristic steam-to-electricity ratio of about 4: in those manufacturing facilities with a ratio greater than it, employing ST&P ORC instead of other traditional CHP technologies leads to better economic results
- ST&P ORC can be combined to other traditional CHP technologies to maximize primary energy savings and economic results
- ST&P ORC is the first economically viable ORC solution using traditional fuels for non-subsidized markets

a group company of 🙏 MITSUBISHI HEAVY INDUSTRIES, LTD.

Riccardo Vescovo Sales and Business Development Leader

REFERENCES

[1] Macchi E., Astolfi M., 2016.Organic Rankine Cycle (ORC) Power System: Technologies and Applications. Woodhead Publishing Series in Energy, Cambridge (UK)

[2] Silvia Lasala, Costante Invernizzi, Paolo Iora, Paolo Chiesa, Ennio Macchi, Thermal stability analysis of perfluorohexane, Energy Procedia

[3] Invernizzi C.M., Iora P., Bonalumi, Macchi E., Roberto R., Caldera M., 2016. Titanium tetrachloride as novel working fluid for high temperature Rankine Cycles: Thermodynamic analysis and experimental assessment of the thermal stability. Applied Thermal Engineering

[4] Pasetti M., Invernizzi C.M., Iora P., 2014. Thermal stability of working fluids for organic Rankine Cycles: An improved survey method and experimental results for cyclopentane, isopentane and n-butane. Applied Thermal Engineering

[5] Author's processing

[6] Poyry Italy, 2016, Market and technology assessment for a new product. Commissioned by Turboden