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Outline

Low grade heat recovery in food and beverage via ORC

Case study: intermittent waste heat recovery in coffe roasting

Comparison of investment strategies and key techno-economic factors

Key findings and conclusions



Waste heat in food and beverage sector
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Overview of waste heat in the industry in France," in ECEEE 2012 Industrial Summer Study, Brussels, 2012
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« Large potential for low-temperature
waste heat recovery in food and
beverage




Volume flow [Nm?/h]
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Intermittent heat source vs. variable energy demand
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Intermittent heat source Variable energy demand

Challenges:

« Optimal system sizing and configuration
Opportunities from storage, multi-fuel integration
« Optimal operation: baseload or load following?




Intermittent heat recovery: The torrefaction process
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Saicaf torrefaction process: Case studies definition
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Case study 1. Regenerative gas microturbine for on site CHP — size 200 kWe (benchmark)

Case study 2: ORC fed by intermittent heat discharged by the process — size 26 kWe

Case study 3: Non-regenerative gas microturbine to match on site heat demand — size 200 kWe
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Case 1: Regenerative CHP-MGT
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Case 2: Waste-heat recovery via ORC
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Case 2: Waste-heat recovery via ORC

Throup = 120 °C Thrsup = 150 °C

Working fluid | Butane Pentane R227ea R245fa R1234ze | Butane Pentane R227ea R245fa R1234ze

25.9 26.6 26.3 30.3 29.8 32.3 30.4
Nore (%) 9.07 8.99 9.21 9.10 9.13 10.5 10.3 11.2 10.5 11.5
Prvap (bar) 11.1 4.0 23.4 8.8 24.5 16.2 5.5 27.8 13.6 34.5

1.14 6.84 2.46 7.52 3.73 1.14 6.84 2.46 7.51

Qoue KW) 262 263 262 262 262 258 259 256 258 255

Qrecup (kW) 448 43.1 58.3 42.8 31.9 11.9 20.1 98.7 11.6 45.7




Case 3: Non-regenerative CHP-MGT

Replacement of existing modulating boiler and set up of inline afterburner

Case 3 compared to
Case 1

Turbine outlet Higher

temperature

Electrical efficiency Lower

NG consumption Higher

« Unitary cost similar to Case 1 as afterburner controls cost similar to MGT regenerator
« Overall costs depends on gas/electricity price ratio



Technoeconomic analysis

operation) (years)

Case 1 Case 2 Case 3
Plant size (kWe 200 26 200
NG saved (Nm?3/cycle) 1.65 - 10.28
Electricity generated (kWh/cycle) 33.33 4.3 33.33
NG consumption (Nm?3/cycle) 11.31 - 19.90
Saving (Eur/cycle) 5.65 0.65 8.96
(TI‘E’L"’:}S)ZSI;)“%' +O&M) 475 0.06 8.06
Balance (Eur/cycle) 0.9 0.59 0.9
Investment (Eur) 200,000 120,000 180,000
Payback time (cycles) 222,200 203,400 200,000
Payback time (6 hours per day 3.7 217 213
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Key results — 1

Case study 1: Natural gas microturbine

*Profitability increases with electricity/natural gas cost ratio and production capacity
«Can better match electricity demand at higher production capacity

Annual benefit vs electricity/NG cast [case I, MGT)
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Key results — 2

Case study 2: Intermittent waste heat recovery via ORC

*Highly influenced by production capacity
At high production capacity, MGT is more profitable than ORC

Annual benefit vs electricity cost-case 2 ORC
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Conclusions

Low-grade waste-heat recovery from food processing has large potential and ORC is a
promising technology (working fluids, cycle configurations)

Waste-heat recovery from coffee roasting via ORC is profitable only at very high production
capacity, otherwise on site MGT based CHP is more competitive

Integration of on-site CHP via gas microturbine and intermittent waste heat recovery via ORC
should be explored, to increase whole system flexibility and enhanced demand response
strategies

Optimal coupling of demand and supply is a key factor: matching intermittent heat source and
variable demand could maximize benefits
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Waste heat recovery options

Source heat utilized

TWh heat/yr

Source heat utilized

Technical potential base case

~70% of industrial sites have streams with <1 MWth corresponding
to ORC unit sizes <100-200 kWel

DECC, The potential for recovering and using surplus heat from industry,

TWh heat/yr
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ORC technology

*low- to medium-grade heat (below 100 °C to 300-400
OC)

*ORC systems significantly outperform competing
options: thermoelectric generators (TEGs), Stirling and
thermoacoustic (TA) engines.

*Efficiencies in excess of 25% are achievable at higher
temperatures (i.e., above 300 °C).

*~600 plants currently in operation worldwide and a
cumulative capacity of 2 GW.

*Commercially available systems are much larger than
those proposed here (up to 100-200 kWel).

ORC Systems

Thermal efficiency (%)
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e Standard operation with 100-300 2C heat gives ~8-25% thermal efficiency, ~5-10 yr payback
* Levelised energy cost (LEC) over 25 years = “Eur30-40/MWh for ORC

e ~Eur100-200/MWHh for renewables

e ~Eur50-100/MWHh for conventional power generation




ORC technology and research challenges

Heat sources: waste-heat. ==mm) - INCrease the efficiency of the ORC (working fluids, cycle
geothermal, solar, CHP, configurations)
biomass, bottoming cycles - design cost optimal ORCs (cost components modelling, learning
I )
curves, trade-offs and and thermo-economic analyses

‘ - optimal coupling of demand and supply: part load operation,
— | matching intermit?ent heat_ source a_md variable demand
- whole systems integration: multi-fuel energy sources, thermal

storage, energy networks integration and demand response

strategies

I
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g? Regeneration?
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Heat sinks: Cooling water,
ambient air, lower grade heat
demand
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ORC thermo-economic optimization

Purchase Cost Correlations:

(1 Originate from the chemical industry plant cost estimations

a Steps:

v"  Calculate basic cost

v"  Estimate impact of materials, pressures etc. on the basic cost

v"  Estimate purchase cost

v~ Account for installation, contractors fees etc. in the bare module cost

v"  Calculate total cost — Lang Factors are used x1.18

O Seider 2003 or 2009 Cp = F exp(K; + KyIlnA + K3ln®A)
2

d Turton 2001 E‘g — F 10(H1+H2I0510A+K310.§'1u A)

=  A: The specific parameter for which its correlation is designed (area, pressure,
volume flow rate etc.)

= Ki: Values from Tables for different components

= F: Factors to account for different pressure, materials, etc. (Correlations for those
F factors also exist)



Intermittent heat recovery: the coffee torrefaction process

Roasting capacity 500 kg/hour
Operation 6 hours/day

Natural gas consumption 7,000 GJ/year
Modulating boiler size 1 MWt
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Saicaf torrefaction process: case studies definition SAICAR

Case study 1: regenerative gas microturbine for on site CHP — size 200 kWe (benchmark scenario)

Case study 2: ORC fed by intermittent heat discharged by the process — size 26 kWe

Case study 3: not regenerative gas microturbine to match on site heat demand — size 200 kWe
(reduced electric efficiency but higher heat availability for torrefaction process)
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Main Conclusions

Low grade waste heat recovery from food processing has large potential and ORC is a promising
technology (working fluids, cycle configurations)

Cost is the main barrier, and cycle configurations with max efficiency often present highest costs —
thermoeconomic optimization required

Waste heat recovery from coffee roasting via ORC is profitable only at very high production capacity,
otherwise on site MGT based CHP is more competitive

Integration of on site CHP via gas microturbine and intermittent waste heat recovery via ORC should
be explored, to increase whole system flexibility and enhanced demand response strategies

optimal coupling of demand and supply is a key factor: matching intermittent heat source and
variable demand could maximize benefits

multi-fuel energy sources, thermal storage, energy networks integration and demand response
strategies are crucial to facilitate penetration of these technologies



