

A turbine based domestic micro ORC system

Piotr Klonowicz, Łukasz Witanowski, Łukasz Jędrzejewski, Tomasz Suchocki, Piotr Lampart

The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences Turbine Department

- Nowadays, the world needs more responsible ways of energy conversion and use,
- Lots of households use solid fuel boilers for heating,
- A high quality fuel is used to rise the temperature only by a few degrees,
- The reason: cogeneration in the range up to 20 kW is technologically and economically challenging,
- MicroCHP technologies for solid fuels:
 - Stirling engines,
 - Peltier modules,
 - Steam systems,
 - ORC systems,
 - Other.

Solutions of ORC based systems

- Coupling an ORC to a typical domestic boiler, low temperature (90 °C) -> poor efficiency,
- Pressurized water loop -> high pressures,
- Thermal oil loop -> relatively expensive,
- Direct evaporation -> dangerous (potential explosions), risk of working fluid decomposition.

Assumtions:

- Expander efficiency (including electric generator): 55 %
- Pump efficiency: 40 %
- Evaporation temperature: 150 °C
- Cooling water temperature: 15 °C
- Warm water temperature: above 40 °C

Fluid	Condensing	Turbine power [kW]	Pump power [kW]	Net efficiency [%]	mass flow [kg/s]	p _{ev} [bar(a)]	p _{cond} [bar(a)]
Cyclopentane	Above atmospheric	1.46	0.1	9.7	0.029	10.67	1.04
Acetone		1.32	0.07	8.8	0.023	10.34	1.01
HFE7100	pressure	1.19	0.12	7.9	0.1	8.21	1.02
Cyclohexane	Below atmospheric pressure	1.54	0.05	10.3	0.03	5.00	0.36
MM		1.47	0.05	9.5	0.05	3.19	0.21
HFE7100		1.40	0.12	9.4	0.095	8.21	0.66

🚔 Most important turbine design features

Fluid	N _s 30 krpm	N _s 60 krpm	N _s 100 krpm	N _s 150 krpm	N _s 200 krpm	n _{opt} [krpm]	u _{impulse} [m/s]	u _{reaction} [m/s]	A _{1x} [mm ²]
Cyclopentane	0.010	0.019	0.032	0.048	0.064	280	203	287	8.9
Acetone	0.008	0.017	0.028	0.042	0.055	325	216	305	7.9
HFE7100	0.029	0.057	0.095	0.143	0.190	94	101	142	19.6
Cyclohexane	0.016	0.031	0.052	0.078	0.104	174	203	286	18.2
MM	0.031	0.061	0.102	0.154	0.205	88	150	213	33.9
HFE7100	0.030	0.059	0.099	0.149	0.198	91	111	157	18.7

Where:

- N_s specific speed
- n_{opt} approximate optimal rotational speed
- u_{impulse} rotor peripheral speed in a single stage impulse turbine
- u_{reaction} rotor peripheral speed in a single stage reaction turbine
- A_{1x} total area of nozzle critical section

Advantages:

- Simple design,
- Low axial thrust,
- Can be relatively efficient even at low specific speeds (partial admission possible).

Disadvantages:

- Worse efficiency than reaction stages,
- Worse off-design performance than multistage designs,

Impulse turbines performance and features (correlation based)

Examples for 100 krpm limit (high condensing pressure)

Case study – acetone turbine off-design performance (constant back pressure)

Case study – acetone turbine blade geometry and CFD

Case study – 3 kW HFE7100 turbine influence of tip clearance on optimal admission

The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Turbine Department, Fiszera 14 st., 80-231 Gdańsk, Poland

Reaction (radial inflow) turbine example

- It is feasible to design turbines for very small power that achieve acceptable efficiencies,
- Single stage impulse turbines are a simple and attractive option,
- Reaction turbines are more efficient but more difficult to build,
- The sizes, efficiencies, peripheral speeds and rotational speeds vary strongly with respect to different working fluids.

- This work has been founded by The Polish Agency for Enterprise Development and from The Smart Growth Operational Programme (European funds) within the project No. POIR.02.03.02-22-0009/15 carried out jointly with the SARK Company.
- Calculations were carried using the resources of the Academic Computer Centre in Gdańsk