

4th International Seminar on ORC Power System, ORC 2017, 13-15 September 2017, Milano, Italy

EXPERIMENTAL PERFORMANCE OF A MICRO-ORC ENERGY SYSTEM FOR LOW GRADE HEAT RECOVERY

Bianchi M.¹, Branchini L.¹, De Pascale A.¹, Melino F.¹, Orlandini V.¹ Ottaviano S.^{1,2}, Pinelli M.², Spina P.R.², Suman A.²

¹ Università di Bologna – DIN, Bologna, ITALY
² Università di Ferrara- ENDIF, Ferrara, ITALY

- ✓ Background and introduction
- μ-ORC test bench development: organic fluid circuit and external water supply lines
- ✓ Acquisition system project and implementation
- ✓ Test campaign setup: input parameters and data analysis methodology
- ✓ Steady state experimental results and discussion
- ✓ Conclusion and future steps

INTRODUCTION: Background & Experimental activity on μ-ORC

Hot source temperature vs. ORC gross power map from open access ORC experiments database*

* A. Landelle, et al. ORC design and performance comparison based on experimental database. Applied Energy 2017

INTRODUCTION: Background & Experimental activity on μ-ORC

Hot source temperature vs. ORC gross power map from open access ORC experiments database*

N. or DB references

A. Landelle, et al. ORC design and performance comparison based on experimental database. Applied Energy 2017

INTRODUCTION:

Background & Experimental activity on μ-ORC

Hot source temperature and ORC gross power map of open access ORC experiments*

TEST BENCH - Layout

TEST BENCH – ORC System components

TEST BENCH – ORC side instrumentation

TEST BENCH – Water side

TEST BENCH – List of sensors

Physical quantity	Layout point	Sensor	Calibration range	Output signal	Accuracy	Input module			
ORC Temperatures	2, 2', 3, 4, 5, 6, 8, 9	T-type thermocouple	0-90 °C *	± 80 mV	0.5 K	NI9213- Thermocouple input			
ORC Pressures	2, 8, 9		0-20 bar *	0-5 V	0.25 % FS *	NI9207- Voltage Al			
	3, 4, 5, 6	Pressure transducer	0-10 bar *						
ORC mass flow rate	7	Coriolis mass flow meter	0.05-1 kg/s **	4-20 mA	0.3 % RV *	NI9207-Current AI			
ORC density	7		10-1300 kg/m ^{3**}	4-20 mA	0.1 kg/m ³ *				
Hot water temperatures	10, 11	K type thermosouple	0-90 °C *	± 80 mV	0.5 K	NI9213- Thermocouple input			
Cold water temperatures	12, 13	K-type thermocouple		± 80 mV	0.5 K				
Hot water flow rate	10	Magnetic flow meter	0-6.4 l/s **	4-20 mA	0.5 % RV *				
Cold water flow rate	12	Magnetic flow meter	0-9.8 l/s **	4-20 mA	0.5 % RV *	NI9207-Current			
Electric current and voltage		PCB mounted voltage transducer coupled with Rogowski coil current sensor	0-400 V ** 0-5 A **	0-4 V	0.1 % RV 0.2 % RV				
* Calibration performed in the laboratory **Provided by sensor manufacturer									

TEST BENCH – Acquisition system

TEST CAMPAIGN – Data processing

Steady state detection (SSD) methodology

- 1. Proposed by Woodland et al. (2012)
- a) Comparison between averaged values of two set of data, taken ten minutes in-between
- b) The percentage variation between the two consecutive averaged values is computed and compared to specific thresholds

Measured quantity	Threshold		
Temperature	Δ < 0.5 K		
Pressure	Δ < 2 %		
Mass flow rate	Δ < 2 %		
Rotating speed	Δ < 2 %		

SSD application

- R_{critical} depends on several factors, and needs to be evaluated experimentally
 - Only two variables need to be storage for calculation
 - \rightarrow Suitable for real time implementation

Cao, Songling, and R. Russell Rhinehart. "An efficient method for on-line

 $< R_{critical}$

2. R-test

 $R = \frac{s_1^2}{s_2^2}$

identification of steady state." Journal of Process Control 5.6 (1995): 363-374.

 $s_2^2 = \frac{\delta_{f,i}^2}{2}$

 $s_1^2 = \frac{(2-\lambda_1) v_{f,i}^2}{2}$

 $v_{f,i}^2 = \lambda_2 (x_i - x_{f,i-1})^2 + (1 - \lambda_2) v_{f,i-1}^2$

 $\delta_{f_i}^2 = \lambda_3 (x_i - x_{i-1})^2 + (1 - \lambda_3) \delta_{f_i-1}^2$

 $x_{f,i} = \lambda_1 x_i + (1 - \lambda_1) x_{f,i-1}$

1 Hz frequency acquisition

Measured data averaged on steady -state time windows

Set points		Ranges of measured input data							
Т _{нот} [°C]	n _{pump} [rpm] (min-max)	<i>.</i> V _{HOT} [l/s]	T _{COLD} [°C]	<i>V_{COLD}</i> [l/s]	<i>ṁ_{ORC}</i> [kg/s] (min-max)	p ₂ [bar] (min-max)	p₃[bar] (min-max)	<i>Ų_{in}</i> [k₩] (min-max)	
65	270-450	2.60	17.5	2.80	0.052-0.103	10.9-14.4	5.8-6.1	10.4-20.3	
75	375-600	2.60	18.0	2.80	0.083-0.136	13.0-16.9	6.0-6.4	16.1-25.8	
85	270-600	2.60	17.3	2.80	0.055-0.132	11.0-16.8	5.7-6.3	11.7-25.4	

- TESTS PERFORMED AT THREE HOT WATER TEMPERATURE SET POINTS
 - ORC PUMP SPEED VARIED BY RISING STEPS
 - HOT AND COLD WATER FLOW RATES KEPT CONSTANT

TEST CAMPAIGN – Experimental results

Operating conditions

- Maximum evaporation pressure \cong 17 bar
- Condensation pressure keeps constant $\cong 6 \ bar$
- Expansion ratio not influenced by hot water temperature

Superheating degree depending on mass flow rate and T_{HOT}

$$\Delta T_{SH} = T_{SH} - T_{SAT}(p_{ev}) \qquad T_{SH} \cong T_{HOT}$$

Performance parameters expressed as function of ΔT_{SH}

TEST CAMPAIGN – Experimental results

Expander performances

TEST CAMPAIGN – Experimental results

Total efficiency

Net efficiency calculated subtracting feed pump hydraulic power

From literature on micro-ORC test bench:

$$\eta_{pump} = \frac{P_{pump,hyd}}{P_{pump,el}} = 20 \div 50 \%$$

Real pump consumption deeply influences overall efficiency and needs to be accurately measured

CONCLUSION

- Experimental analysis on a micro-ORC energy system, driven by a prototypal three cylinders reciprocating expander
- Test bench implemented with water supply circuits and real-time acquisition system
- Test campaign conducted at steady state conditions, at different hot source temperature set points (65 °C - 75 °C - 85 °C), and varying feed pump speed
- Experimental results show a maximum power output of 1.15 kW_{el} at 780 rpm, for expansion ratio close to 2.7, decreasing with superheating degree
- Expander isentropic efficiency close to 40 %, not significantly influenced by operating conditions
- Maximum ORC efficiency \approx 4.5 % (auxiliary consumption not included)

FUTURE STEPS

- Full characterization of system behavior, investigating more operating conditions
- Acquisition of electrical pump and frequency drive consumption, in order to determine the impact of auxiliaries on system efficiency
- Real-time implementation of steady state detection algorithm R-test
- Evaluation of thermal losses through expander walls

4th International Seminar on ORC Power System, ORC 2017, 13-15 September 2017, Milano, Italy

EXPERIMENTAL PERFORMANCE OF A MICRO-ORC ENERGY SYSTEM FOR LOW GRADE HEAT RECOVERY

Bianchi M., Branchini L., De Pascale A., Orlandini V., <u>Ottaviano S.</u>, Università di Bologna – DIN, Bologna, ITALY

Pinelli M., Spina P.R., Suman A. Università di Ferrara- ENDIF, Ferrara, ITALY

ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI