

Solar/biomass hybrid cycles with thermal storage and bottoming ORC: System integration and economic analysis

A. M. Pantaleo^{1,2}, S. Camporeale³, A. Sorrentino³, A. Miliozzi⁴, N. Shah¹ C. N. Markides¹

Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW2 7AZ UK
 Department of agro-environmental sciences, University of Bari Aldo Moro, IT
 Department of Machinesel Engineering, Debutechnic of Dari, JT

3. Department of Mechanical Engineering, Polytechnic of Bari, IT

4. Energy Technologies Department, ENEA, Casaccia Research Centre, Rome, IT

<u>a.pantaleo@imperial.ac.uk</u> - <u>antonio.pantaleo@uniba.it</u>

ORC 2017 - 4th International Seminar on ORC Systems, September 13-16, Milan, IT

Background and motivations: biomass CHP

Bioenergy issues

•short biomass supply chains to improve economics, sustainability, logistics

•Use of heat (CHP) to maximize global efficiency

• minimum size is required for efficiency and costs

Bioenergy opportunities

•Programmable renewable energy resource

•Can be coupled to other resources (gas, solar, geothermal) to increase flexibility via hybridization

Innovation

biomass CC + CHP

increase global efficiency, operational flexibility (heat/power ratio), economics

Hybrid plants to increase flexibility and address trade-off size vs biomass supply chain

Biomass/natural gas cofiring

Biomass/concentrating solar power

Load following strategies (match with active DSM)

Optimal sizing and operation of hybrid CHP

Background and motivations: hybrid CSP

CSP technologies

solar collectors
heat transfer fluids
max temperature
Storage sizing (variable solar radiation)
Heat to power cycles (steam turbine, ORC, bryton, stirling, etc)

Hybrid CSP

•Integration with gas, waste, geothermal

•Biomass-solar integration: biomass combustor as a partial thermal storage

Innovation

biomass and solar could:

Increase solar **<u>dispatchability</u>**, global efficiency, operational flexibility

Room for optimization:

Match biomass seasonality and solar resource

Optimize biomass/solar energy input ratio

Optimize thermal energy storage size

Biomass to biofuel processing through discharged heat

Modeling dynamic operation and regulation strategies (variable solar radiation - variable load - biomass seasonality - storage)

Objectives

- Conversion efficiency of a 2 MWe CC composed by EFGT (1.3 MWe) and ORC (0.7-0.8 MWe) for direct biomass combustion with CSP integration
- influence of solar/biomass thermal energy input ratio and thermal storage sizing on the plant performance
- Evaluate the economic profitability of the plant in different configurations

EFGT-ORC Combined Cycle layout (basic)

T-S chart : 50% input power from CSP (basic)

T-S chart of bottoming ORC (power blocks)

Case studies description and energy yield (basic)

Case A: baseload with fixed biomass input (100% biomass EFGT+ORC) Cases B: baseload with modulating biomass boiler and low TES size; Cases C: baseload with modulating biomass boiler and high TES size; Case D: variable output with fixed biomass input, and low TES size; Case E: variable output with fixed biomass input, high TES size;

Case study	АÏ	BĦ	с¤	DĦ	ЕД
Biomass furnace size (kW.)	9,050 ¹	9,050 ¹	9,050 <mark>¤</mark>	4,523 🛱	4,523 🎞
Biomass input (t/yr)	25,694 🛱	22,865 🛱	21,462	13,999¤	13,999
Net electric generation (MWh/yr)	15,741 🛱	15,741 🛱	15,741	10,761 🛱	11,818
Equivalent operating hours (hr/yr)	8,040 🛱	8,040	8,040	5,496 🗖	6,036 🛱

Priolo Gargallo site: DNI=2,256 kWh/m²yr; discharged energy 12-13% at low/high TES Electric efficiency case A: 23%, case B to E: 46% (part load efficiency neglected) Biomass boiler efficiency 80%, LHV: 2.86 kWh/kg Auxiliary consumption 6%; Thermal energy for cogeneration 980 kW – 104°C, condenser T: 40°

Case studies description and energy yield (power blocks)

Case A: baseload with fixed biomass input (100% biomass EFGT+ORC) Cases B: baseload with fixed biomass input and low TES size; Cases C: baseload with fixed biomass input and high TES size;

Case study	Α	В	С
Biomass furnace (kW _t)	9,050	9,050	9,050
Biomass input (t/yr)	25,694	25,694	25,694
Topping EFGT net electric power (kW)	1,388	1,388	1,388
Bottoming ORC net electric power (kW)	700	800	800
Electric efficiency gas turbine	15.3%	15.3%	15.3%
Electric efficiency of the ORC ⁽¹⁾ ,	21.5%	29%	29%
Solar share (solar/total energy input yearly basis)	0	6.9%	13.3%
Net electric generation (MWh/yr)	16,786	16,710	17,223
Equivalent operating hours (hr/yr)	8,039	7,568	7,805
(1). Ratio of electric power output and thermal power tra	ansmitted in the	HRVG.	
Case A: 100% biomass input; Cases B and C: CSP with	different TES c	apacity	

Sizing solar field and TES

DNI: 800 W/m^{2;} Solar Collector Assembly SCA: 8 Collectors of 5.9 x 12 m (67 m²)

Net photo-thermal efficiency 65%;

Distance between Collectors of 2.5 times the PTC aperture

Characteristics of the solar field and of the thermal energy storage,

Power blocks

Cases C and E Case study Cases B and D Design TES capacity [h] 13 5.0 Number of lines - total SCAs [-] 3 - 242 - 16Intercepting area [m²] 8609 12 914 Required ground area [m²] 21.523 32,300 Intercepted solar power [MWt] 6.89 10.33 Available thermal power [MWt] basic 4.48 6.72 Solar multiple [-] 1.221.83 Thermal power to the TES [MWt] 0.813.04TES capacity [MWh] 4.8 18.3

Priolo Gargallo site: DNI=2,256 kWh/m²yr; discharged energy 12-13%

Solar field characteristics				
Case study	В	С		
Intercepting area (m ²)	3,228	6,457		
Required ground area (m ²)	8,071	16,142		
Thermal power output(MW)	1.808	3.616		
Solar thermal power available for TES (MW)	0.887	2.6956		
Design TES capacity (MWh)	5.178	16.02		
Design TES discharge hours	5.48	16.96		

Performance of the plants considered for economic analysis

Parameter	Unit	EFGT	EFGT +ORC	EFGT+ORC +CSP (basic)	EFGT+ORC+CSP (power blocks)
Electric power output (ISO) PN	kW	1,383	2,083	2,083	2,183
Auxiliary consumpt. % PN	%	5	6	6	6
Thermal Power output (for CHP)	kW	4,083	963	963	2106
Gas temperature (for CHP)	°C	394	104	104	220
Net-electric efficiency (ISO)	%	15.3	23.0	46.0	32.0

CAPEX and OPEX costs (basic)

Description	EFGT	EFGT+ORC (A)	В	С	D	E
	3,500	4,700	7,684	9,450	7,284	9,050
Turn Key cost (kEur)						
- PTC and CSP	-	-	2,863	4,294	2,863	4,294
- Gas Turbine	1,200	1,200	1,200	1,200	1,200	1,200
- ORC genset	-	1,200	1,200	1,200	1,200	1,200
- Biomass furnace	1,000	1,000	1,000	600	600	600
- HTHE for EFGT	600	600	600	600	600	600
- Civil works,grid conn, eng						
and devel	700	700	700	700	700	700
Unit upfront cost (kEur/kWe)	2.53	2.26	3.69	4.54	3.50	4.34
Opex (included fuel) (kEur/yr)	2,285	2,285	2,186	2,099	1,532	1,549

Global electric efficiency and LCE

Global electric efficiency = ratio electricity / thermal energy input from biomass (annual basis)

Solar share = ratio of thermal energy from CSP vs total thermal energy input (annual basis)

Profitability analysis: influence of biomass supply cost

Electricity only production scenario

Power block is more profitable system configuration than basic scenario

Higher revenues from electricity sales from CSP increase the NPV in comparison to only biomass fuel (more evident at high biomass supply cost)

High investment cost for CSP makes it less profitable than only biomass in BASIC scenario (IRR)

Conclusions

- A hybrid biomass/CSP combined cycle composed by EFGT (non regenerative) + ORC cycle is examined
- The combined cycle EFGT+ORC results more profitable than the simple EFGT option, because of its higher electric efficiency.
- Only in case of high temperature of heat demand, and high thermal demand load, the simple EFGT is the most profitable one
- CSP with PTC and molten salt can be a valuable option for hybrid solar/biomass cycles and such hybrid cycle allows increasing global electric efficiency from 23% to 26-32%
- The integration with CSP increases NPV for the higher feed-in tariff (Italian scenario) but reduces IRR for the high investment costs (in the basic scenario)
- In power block scenario the integration of CSP is optimized and economic profitability is higher than the basic CSP scenario and the only-biomass scenario
- Part load and dynamic modeling is required to optimize operational strategies (load following), energy storage sizing, solar to biomass ratio

Thank you! Any question?

Antonio Marco Pantaleo

Clean Energy Processes laboratory, Department of Chemical Engineering, Imperial College London Department of agro-environmental sciences, University of Bari +39.3207980448

Biomass CHP generation

Steam Turbines

Externally Fired Gas Turbines

Organic Rankine Cycles

Internal Combustion Engines

Internally Fired Gas Turbines

Externally Fired Gas Turbines

Gas-Steam Combined Cycles

CSP generation and hybridization

Solar collectors (required T level, space constraints)

Heat transfer fluid

Biomass/solar hybridization

Linear Fresnel
Parabolic through
Solar dishes
Solar tower
Steam
Diathermic oil
Compressed air
Molten salts (with T of 500-550 °C)
Steam/Rankine cycle
Gasified biomass into bryton cycle
Hot air for Externally Fired Gas Turbines
Gas-Steam Combined Cycles

19

Plant layout modeled in cycle-tempo

ORC cycle selection

fluid-

