FUNDAMENTAL THERMO-ECONOMIC APPROACH TO SELECTING SCO2 POWER CYCLES FOR CSP APPLICATIONS

<u>F. Crespi</u>, D. Sánchez, J.M. Rodríguez, G. Gavagnin, Department of Energy Engineering University of Seville (Spain)

th International Seminar on ORC POWER SYSTEMS

4. INTRODUCTION & SCOPE OF THE WORK

□ INTRODUCTION & SCOPE OF THE WORK

- SIMULATION TOOLS
 - HEAT EXCHANGERS
 - TURBOMACHINERY
 - COMPLEMENTARY ASSUMPTIONS
 - □ Thermal Energy Storage
- Results
 - Thermodynamic analysis
 - Thermo-economic analysis
- CONCLUSIONS

1. INTRODUCTION: REVIEW OF THE STATE OF THE ART

1. INTRODUCTION: PREVIOUS WORK

- Set up and develop a systematic analysis of different sCO2 cycles proposed in literature
 - Overcome the absence of thorough and rigorous analysis of underlying thermodynamic principles of sCO2 cycles

Our study

- 12 most interesting cycles are selected
- Common boundaries conditions are set
- Four TIT levels (550,750,950 and 1150 °C)
- Pure thermodynamic analysis, without technical restriction in terms of pressures and temperatures
- Pressure ratio is varied from 2 to highest value allowed by recuperation process (one single restriction)

- Obtain Thermal Efficiency vs Specific Work diagrams, as a function of TIT and PR (Angelino)
- Separate thermodynamic potential of each cycle from inherent technological constraints
- Provide a clear insight into the cycle's potential, regardless of the application

1. INTRODUCTION: PREVIOUS WORK

Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition GT2017 June 26-30, 2017, Charlotte, NC, USA

GT2017-64418

ANALYSIS OF THE THERMODYNAMIC POTENTIAL OF SUPERCRITICAL CARBON DIOXIDE CYCLES: A SYSTEMATIC APPROACH

Francesco Crespi, Giacomo Gavagnin, David Sánchez; Gonzalo S. Martínez Department of Energy Engineering, Thermal Power Group University of Seville - Seville, Spain Definition of the cycles of interest for different applications (for each TIT)

Representative technological pressure limits

Black markers \rightarrow Pmax \leq 40 MPa

White markers \rightarrow Pmax > 40 MPa

Some of the plots have been trimmed near the left end in order to facilitate the reading

1. INTRODUCTION: SCOPE OF THE WORK

 Study the potential of sCO2 technology for CSP applications (Solar Towers) incorporating a Thermal Energy Storage (TES) system operating on high temperature molten salts

CSP Power Plant specifications:

- 50 MWel
- 10 hours storage capacity (TES made up of hot/cold tanks for extended operation at full load)

Alternative Thermo-Economic approach:

Three TIT levels considered: 800, 900 and 1000 °C \rightarrow solar only and hybrid solutions

• Figures of merit \rightarrow Thermal Efficiency (η_{th}) , Specific Work (W_s)

Temperature rise across solar receiver (ΔT_{solar}), Solar Share (SS)

- Economic analysis \rightarrow Solar field Cost (inversely proportional to η_{th})
 - \rightarrow TES Cost (inversely proportional to ΔT_{solar})
- η_{th} and ΔT_{solar} achieve their maximum values at different Pressure Ratios \rightarrow Compromise is mandatory

1. INTRODUCTION: CYCLES CONSIDERED

Transcritical CO2

- Originally proposed by Angelino (1969)
- Pseudo-Rankine cycle adapted to the supercritical region. Fairly high turbine inlet temperature but very low pressure ratio, exhibiting superheated vapour (gas) at turbine exhaust
- Reduces compression work by performing this task near the supercritical point

Partial Cooling

- Originally proposed by Angelino (1969) in a transcritical embodiment, hereby considered in the adaption made by Dostal (2004)
- Very similar to Recompression one, with a mere addition of a cooler and pre-compressor line before the split-valve.
- Twofold benefit: a) Reduction of pinch-point problem in lowtemperature recuperator thanks to lower mass flow rate on the cold side, b) Reduction of cooler size due to lower thermal duty
- Higher specific work and lower sensitivity of global efficiency upon deviation from optimum pressure ratio

4. SIMULATION TOOLS

□ INTRODUCTION & SCOPE OF THE WORK

SIMULATION TOOLS

- HEAT EXCHANGERS
- TURBOMACHINERY
- COMPLEMENTARY ASSUMPTIONS
- □ Thermal Energy Storage
- Results
 - Thermodynamic analysis
 - THERMO-ECONOMIC ANALYSIS
- CONCLUSIONS

3. SIMULATION TOOLS: HEAT EXCHANGERS

One-dimensional model, equipment divided in a suitable number of sub-heat exchangers (Nellis&Klein)

- Each sub-HX characterised by the same duty
- Small temperature changes considered \rightarrow constant sCO2 properties
- Possibility to use ε-NTU methodology in each sub-HX

Original methodology to control pinch-point in the heat exchanger

- A value of ϵ =95% is assumed for each sub-HX
- Differences between hot and cold fluids are computed for all divisions (ΔTi)
- The resulting minimum difference (Δ Tpinch) checked to be \geq 5°C
- If $\Delta T_i < 5^{\circ}C$ for any given i, the corresponding ϵ is modified until the target ΔT_{pinch} is achieved

3. SIMULATION TOOLS: TURBOMACHINERY

- **u** Turbomachinery simulation is fairly simple, given that it is intended for on-design performance only
- A lumped volume model is employed, defining polytropic efficiencies
 - Polytropic efficiency instead of Isentropic one → better capture the influence of very different pressure/temperature levels
 - Representative values are computed considering the ones declared in literature (Polytropic efficiencies reverse-calculated from isentropic ones)
 - 89% Compressors, 90% Turbines, 83% Pumps
 - Isentropic efficiencies are then calculated depending on the operating conditions of each turbomachine

3. SIMULATION TOOLS: COMPLEMENTARY ASSUMPTIONS

Compressor Inlet Conditions

Cycle	$T_{in,compr}$ [°C]	P _{in,compr} [MPa]	$\eta_{pol,T}$ [%]	$\eta_{pol,C} [\%]$	$\eta_{pol,pump}$ [%]	ΔP_{HX} [%]
Transcritical Simple Recuperated	15	5	90	89	83	1
Supercritical Partial Cooling	32	5	90	89	83	1

15°C and 5 MPa to enable condensation

5 MPa to enable pre-compression

- Heat Exchangers pressure drops set to 1%
- Piping pressure drops neglected
- □ Thermo-physical properties of sCO2 obtained with open-source database CoolProp
- Solar field Cost obtained with the software SAM (System Advisor Model)

3. SIMULATION TOOLS: THERMAL ENERGY STORAGE

Intermediate-High TIT levels (>600°C) → Solar Salt cannot be employed in TES system

FLiNaK: Ternary eutectic alkaline metal fluoride salt mixture, LiF-NaF-KF (46.5-11.5-42 mol %)

Salt	Composition	Freezing Point [°C]	Boiling Point [°C]	Density [kg/m ³]	Specific heat J/kgK]	Price [\$/kg]
Solar Salt	NaNO ₃ -KNO ₃	220	600	$-0.636 \cdot T + 2090$	$0.172 \cdot T + 1443$	1.1
FLiNaK	LiF-NaF-KF	454	1570	$2408.9-0.624\cdot T$	$1267.2 + 1.0634 \cdot T$	8.6

• Constant $\Delta T = 20^{\circ}$ C between FLiNaK and sCO2

At those conditions, far from the critical region, sCO2 can be assumed to be an ideal gas.

□ Freezing point 454°C \rightarrow minimum temperature 474°C

□ Maximum temperature 820°C ($T_{sub,receiver}$ =800°C)

Δ**T**_{solar} maximum value: 346 °C

3. SIMULATION TOOLS: THERMAL ENERGY STORAGE

In-house model (validated)

dations n the Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier.com/locate/solener

() CrossMark

Installation and insulation costs, along with foundations and all auxiliaries equipment ones, are included in the in-house model.

Cost indexes to account the inflation and cost scaling factors have been employed to correct the results obtained.

Techno-economic assessment of thermal energy storage solutions for a 1 MWe CSP-ORC power plant

* University of Seville, Camino de los descubrimientos s/n, 41092 Seville, Spain

^b Research Institute on Solar Energy and New Energies (IRESEN), Quartier Administratif, BP 6208 Rabat-Instituts Agda, Morocco ^c AICIA, Camino de los descubrimientos s/n, 41092 Seville, Spain

4. RESULTS

- □ INTRODUCTION & SCOPE OF THE WORK
- SIMULATION TOOLS
 - HEAT EXCHANGERS
 - TURBOMACHINERY
 - COMPLEMENTARY ASSUMPTIONS
 - □ Thermal Energy Storage
- Results
 - Thermodynamic analysis
 - THERMO-ECONOMIC ANALYSIS
- CONCLUSIONS

4. RESULTS: THERMODYNAMIC ANALYSIS

4. RESULTS: THERMODYNAMIC ANALYSIS

4. RESULTS: THERMO-ECONOMIC ANALYSIS

Reference case: $\eta_{th} = 45\%$, $\Delta T_{solar} = 230^{\circ}C$

Sensitivity Analysis: $\eta_{th} = 30 \div 60\%$, $\Delta T_{solar} = 90 \div 350^{\circ}C$

4. RESULTS: THERMO-ECONOMIC ANALYSIS

Partial Cooling

4. RESULTS: THERMO-ECONOMIC ANALYSIS

4. CONCLUSIONS

□ INTRODUCTION & SCOPE OF THE WORK

- SIMULATION TOOLS
 - HEAT EXCHANGERS
 - TURBOMACHINERY
 - COMPLEMENTARY ASSUMPTIONS
 - □ Thermal Energy Storage
- Results
 - Thermodynamic analysis
 - Thermo-economic analysis

5. CONCLUSIONS

Thermodynamic approach

Transcritical CO2 \rightarrow higher W_s , ΔT_{solar} and SS

Partial Cooling \rightarrow higher η_{th}

Transcritical CO2					
	Thermal Efficiency [%]	Specific Work [kJ/kg]	Temperature Rise [ºC]	Solar Share [%]	
800ºC, 25 MPa	47,9	235,2	346,0	100,0	
1000ºC, 25 MPa	51,9	286,7	228,9	52,8	

Partial Cooling						
	Thermal Efficiency [%]	Specific Work [kJ/kg]	Temperature Rise [ºC]	Solar Share [%]		
800ºC, 25 MPa	52,2	188,5	284,8	100,0		
1000ºC, 25 MPa	56,7	241,1	128,4	39,0		

5. CONCLUSIONS

Thermo-economic approach

Partial Cooling seems to better combine thermodynamic and economic features, obtaining a higher η_{th} with similar Solar field and TES costs (for 800°C)

In particular, it seems to be a larger benefit coming from higher PR rather than higher TIT, at least for the two cycles considered.

Same technology and materials, but heavier equipment

FUNDAMENTAL THERMO-ECONOMIC APPROACH TO SELECTING SCO2 POWER CYCLES FOR CSP APPLICATIONS

<u>F. Crespi</u>, D. Sánchez, J.M. Rodríguez, G. Gavagnin, Department of Energy Engineering University of Seville (Spain)

th International Seminar on ORC POWER SYSTEMS

