

Thermodynamic Optimization of heat recovery ORCs for heavy duty Internal Combustion Engine: pure fluids vs. zeotropic mixtures

4th International Seminar on ORC Power Systems

September 13th - 15th, 2017 Politecnico di Milano - Milan, Italy **Roberto Scaccabarozzi**

Michele Tavano Costante Mario Invernizzi Emanuele Martelli emanuele.martelli@polimi.it

Motivations

Great diffusion of internal combustion engine, mainly in the transport sector

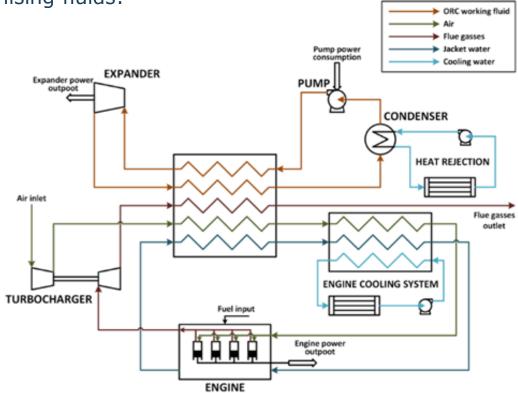
Main advantages of **recovering the waste heat**:

- Increasing power generation and efficiency
- Reducing carbon footprint and fossil fuel consumption

The **technical and economic feasibility** increases with engine **size** and for engines running mainly at **constant load**, like for power production and large naval engines

Lacking of a systematic study of the ORC considering:

- The optimal working fluid selection
- The optimization of the **heat integration** with all the possible heat sources
- The optimization of the cycle variables


POLITECNICO MILANO 1863

Roberto Scaccabarozzi

Objectives

- 1. Performing a systematic **thermodynamic optimization** of heat recovery ORCs for internal combustion engines
- 2. Devising an ad hoc **optimization approach**
- 3. Screening a large number of promising fluids:
 - Conventional and recently developed fluids (HFE, HCFO, HFO)
 - Binary zeotropic mixtures
- Selecting optimal operative conditions and cycle configuration

Economic and operational aspects, **v** which require also the optimization of the heat exchanger configuration, are **not considered** in this work

POLITECNICO MILANO 1863

Roberto Scaccabarozzi

Challenges

- Extremely large number of possible fluids and mixtures → Need of fluid selection criteria
- Several heat sources available:
 - Exhaust gas
 - Scavenge air
 - Jacket water
- Several possible arrangements of the heat exchangers → Need of considering the heat integration between the three hot streams and the cycle

POLITECNICO MILANO 1863

Roberto Scaccabarozzi

Fluid selection

Selection criteria:

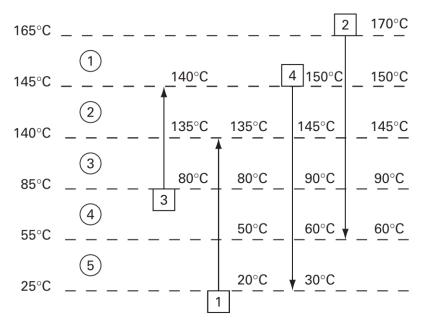
- Optimal **heat integration** with the hot flue gas stream (critical temperature close to flue gas inlet temperature)
- **Condensation pressure** at ambient temperature higher than 0.03 bar (preferably above atmospheric)
- **Thermo-chemical stability** (preferably up to the flue gas inlet temperature)
- Low **environmental impact** (GWP, ODP, ALT)
 - No CFC, HCFC, PFC
- **Measured** fluid **property data** and **validated Equation of State** (NIST, REFPROP V9.1)
 - OR -

Available Equation of State **parameter estimation method** (Lemmon 2001)

POLITECNICO MILANO 1863


Roberto Scaccabarozzi

Heat Integration


6

The heat integration algorithm is the **energy targeting** method proposed by Maréchal and Kalitventzeff based on the "heat cascade":

- No restriction regarding the possible matching of the flows
- The heat transfer is performed in a multi-flow heat exchanger
- Linear bihavior of the streams (disctretization)
- Streams are divided into temperature intervals

- The variables are the ORC mass flow rate and cooling water
- The constraints are the **energy balance** of each temperature interval
- The objective function is the maximum energy efficiency (recovered power)

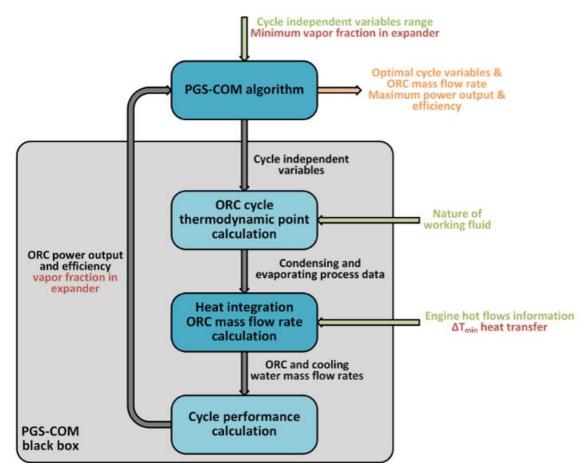
POLITECNICO MILANO 1863

Roberto Scaccabarozzi

Cycle optimization problem

Optimization problem: (performed for each fluid/mixture selected)

- Objective function:
 - Maximum mechanical/electric power generated by the heat recovery ORC
- Independent optimization variables:
 - Evaporating pressure
 - Condensing pressure
 - Turbine inlet temperature
 - Mass flow rate of ORC
 - Composition (only for mixtures)
- Nonlinear constraints:
 - Minimum vapor fraction in the expansion greater than 0.88
 - Minimum temperature difference in each heat exchanger grater or equal to 5°C
- Key Assumptions:
 - Set of hot streams made available by an internal combustion engine
 - Temperature of the available heat sink
 - Ideal behavior of the ORC cycle components



POLITECNICO MILANO 1863

Roberto Scaccabarozzi

Optimization algorithm

- At the upper level, PGS-COM (evolutionary) optimizes the independent cycle variables and the composition (mixtures)
- REFPROP evaluates the thermodynamic properties of the fluids
- The energy targeting optimizes the ORC and cooling water mass flow rates
- The ORC mechanical power and efficiency are returned to PGS-COM as **output of the optimized black-box** function

POLITECNICO MILANO 1863

Roberto Scaccabarozzi

Two large Diesel engines of the same size (10 MW), but with **opposite features**:

- Man S60-MC6: two-stroke with $P_{el}=10.2$ MW and $T_{fq}=245$ °C
- Wärtsilä 46DF: four-stroke with $P_{el}=10.3$ MW and $T_{fg}=354$ °C

Different exhaust temperatures allows assessing the effects of this parameter on the optimal fluid selection, cycle configuration and ORC efficiency

Flow	Flow Feature		Man S60-MC6	Wärtsilä 46DF	
	Cycle type		Two-stroke	Four-stroke	
	Power output	kW	10200	10 305	
	Efficiency (full load)	%	49.59	45.33	
	Mass flow rate	kg/s	26.53	19.00	
Exhaust gas	Thermal power	kW	3 607	4 892	
	Temperature range	°C	245 - 120	354 - 120	
	Mass flow rate	kg/s	26.00	18.40	
Scavenge air	Thermal power	kW	3 970	3 789	
	Temperature range	°C	198 - 48	253 - 50	
Jacket water	Mass flow rate	kg/s	21.06	23.16	
	Thermal power	kW	1 490	1 653	
	Temperature range	°C	80 - 63	91 - 74	

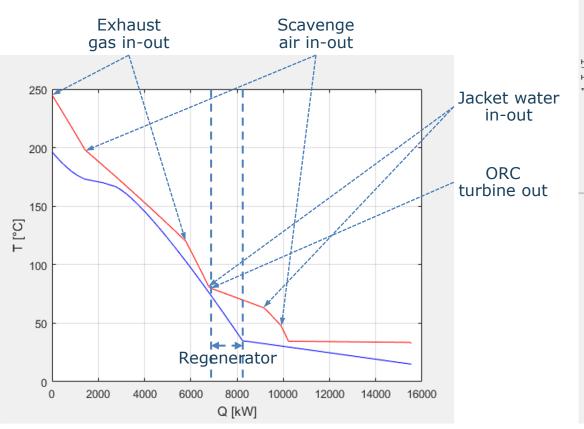
POLITECNICO MILANO 1863

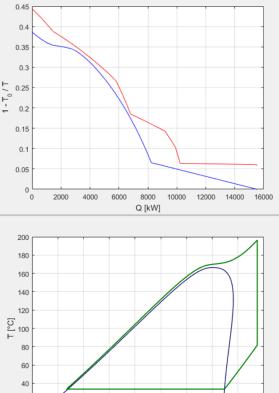
Roberto Scaccabarozzi

Man S60-MC6 (T_{fg}=245°C):

- HCFO-1233zde
 - Trans-critical cycle configuration with isentropic expansion
 - Non-flammable* GWP=1 ODP=0
- HFE-245fa2
 - Trans-critical cycle configuration with dry expansion and large regenerator
 - Non-flammable* GWP=812 ODP=0
- HFO-1336mzz
 - Trans-critical cycle configuration with dry expansion and large regenerator
 - Non-flammable* GWP=2 ODP=0

Fluid	W _{out} ORC	η_{exe}	Turbine inlet temperature	Turbine inlet pressure	N° of expander stages
	kW	%	°C	bar	-
HCFO-1233zde	1802.5	75.71	196.31	38.61	2
HFE-245fa2	1795.9	75.44	197.86	36.17	2
HFO-1336mzz	1790.1	75.19	195.38	30.52	2
Novec [™] 649	1687.6	70.89	178.46	19.06	2


*directly coupled with the flue gasses



Roberto Scaccabarozzi

Man S60-MC6 (T_{fg}=245°C):

• HCFO-1233zde

POLITECNICO MILANO 1863

Roberto Scaccabarozzi Thermodynamic Optimization of heat recovery ORCs for heavy duty Internal Combustion Engine: pure fluids vs. zeotropic mixtures

1.3 1.4 1.5 1.6 1.7 1.8 1.9

s [kJ/kgK]

20

1

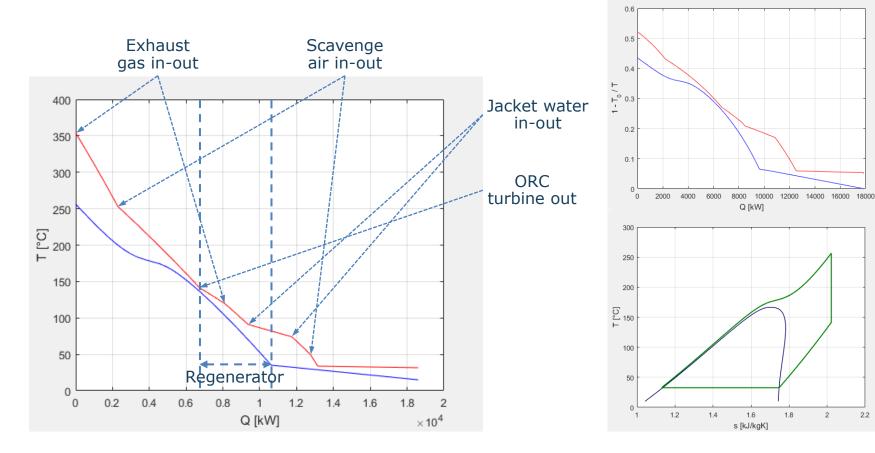
1.1 1.2

Wärtsilä 46DF (T_{fq}=354°C):

- Cyclopentane
 - Sub-critical cycle configuration with isentropic expansion and sub-atmospheric condensing pressure
 - Flammable toxic GWP=11 ODP=0
- Ammonia
 - Trans-critical cycle configuration with wet expansion
 - Flammable toxic GWP=0 ODP=0
- HCFO-1233zde
 - Trans-critical cycle configuration with isentropic expansion

 Non-flammable* 			GWP=1	ODP=0	
Fluid W _{out} ORC		η_{exe}	Turbine inlet temperature	Turbine inlet pressure	N° of expander stages
	kW	%	°C	bar	-
Cyclopentane	2456.5	73.82	235.54	42.70	2
Ammonia	2 443.1	73.42	325.00	166.93	4
HCFO-1233zde	2 420.2	72.73	256.34	43.56	2
Novec [™] 649	2244.4	67.45	226.85	19.78	2

*directly coupled with the flue gasses



POLITECNICO MILANO 1863

Roberto Scaccabarozzi

Wärtsilä 46DF (T_{fg}=354°C):

HCFO-1233zde •

Roberto Scaccabarozzi Thermodynamic Optimization of heat recovery **ORCs for heavy duty Internal Combustion** Engine: pure fluids vs. zeotropic mixtures

2.2

2

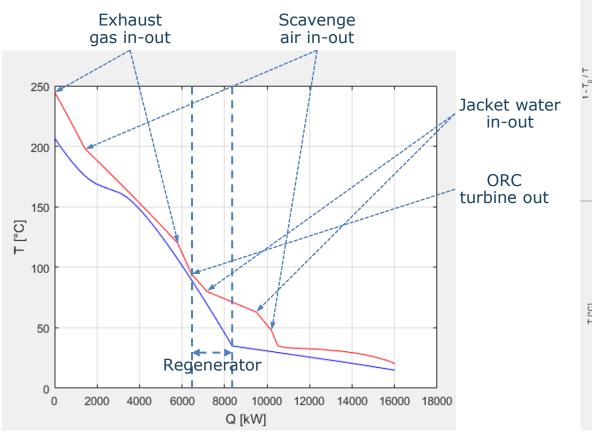
Mixtures results

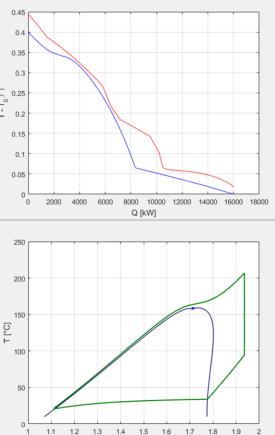
Man S60-MC6 (T_{fg}=245°C):

- HCFO-1233zde/HFC-134a (90/10 wt%)
 - Trans-critical cycle configuration
 - Non-flammable*
 GWP_{HFC-134a}=1430
- HFO-1336mzz/HFC-134a (97/3 wt%)
 - Trans-critical cycle configuration
 - Non-flammable*
 GWP_{HFC-134a}=1430
- Isobutane/Pentane (56/44 wt%)
 - Trans-critical cycle configuration
 - Flammable GWP<20

Fluid		W _{out} ORC	η_{exe}	Turbine inlet temperature	Turbine inlet pressure	N° of expander stages
(Weight fraction wt%)		kW	%	°C	bar	-
HCFO-1233zde (90)	HFC-134a (10)	1867.8	78.45	206.85	42.17	2
HFO-1336mzz (97)	HFC-134a (3)	1827.5	76.76	195.07	31.55	2
Isobutane (56)	Pentane (44)	1694.7	71.18	170.02	38.60	2

*directly coupled with the flue gasses




Roberto Scaccabarozzi

Mixtures results

Man S60-MC6 (T_{fg}=245°C):

s [kJ/kgK]

Roberto Scaccabarozzi

Mixtures results

Wärtsilä 46DF (T_{fg}=354°C):

- Cyclopentane/Cis-Butene (82/18 wt%)
 - Trans-critical cycle configuration
 - Flammable
- Cyclopentane/Heptane (78/22 wt%)
 - Sub-critical cycle configuration
 - Flammable
- Ammonia/Water (98/2 wt%)
 - Trans-critical cycle configuration
 - Flammable

Fluid		W _{out} ORC	η_{exe}	Turbine inlet temperature	Turbine inlet pressure	N° of expander stages
(Weight fraction wt%)		kW	%	°C	bar	-
Cyclopentane (82)	Cis-Butene (18)	2540.4	76.35	233.78	47.04	2
Cyclopentane (78)	Heptane (22)	2528.9	76.00	235.26	36.44	2
Ammonia (98)	Water (2)	2523.2	75.83	324.86	165.34	4

POLITECNICO MILANO 1863

Roberto Scaccabarozzi

	Ν	lan S60-MC		Wärtsilä 46DF				
		W _{out} ORC kW	η _{exe} %	η _{II ICE+ORC} %		W _{out} ORC kW	η _{exe} %	η _{II ICE+ORC} %
Pure fluid	HCFO-1233zde	1802.5	75.71	58.36	Cyclopentane	2456.5	73.82	56.13
	HFE-245fa2	1 795.9	75.44	58.33	Ammonia	2443.1	73.42	56.07
	HFO-1336mzz	1 790.1	75.19	58.30	HCFO-1233zde	2420.2	72.73	55.97
Mixtures (wt%)	HCFO-1233zde (90) + HFC-134a (10)	1867.8	78.45	58.68	Cyclopentane (82) + Cis-Butene (18)	2 540.4	76.35	56.50
	HFO-1336mzz (97) + HFC-134a (3)	1827.5	76.76	58.48	Cyclopentane (78) + Heptane (22)	2 528.9	76.00	56.45
	Isobutane (56) + Pentane (44)	1 694.7	71.18	57.83	Ammonia (98) + Water (2)	2 523.2	75.83	56.43

POLITECNICO MILANO 1863

Roberto Scaccabarozzi

Conclusion

Pure fluids:

- **Super-critical cycles** can reach a **better thermodynamic matching** with the linear temperature profile of the hot flue gases (Lorentz cycle)
- **HCFO-1233zde** appears to be a promising fluid both the engines analyzed, in particular with the low-temperature exhaust gasses
 - Relatively low critical temperature (trans-critical cycle configuration)
 - High molar mass (small enthalpy drop and number of expander stages)
 - Condensing pressure higher than the atmospheric one
- Another promising pure fluid is **Novec[™] 649**
 - Trans-critical cycle configuration with sub-atmospheric condensing pressure
 - Close to maximum efficiency
 - Small enthalpy drop and volumetric ratio
 - Non-flammable
 - Low environmental impact (GWP = 1 ODP=0)

POLITECNICO MILANO 1863

Roberto Scaccabarozzi

Conclusion

Mixtures:

- The use of optimized mixtures leads to an increase of the recovered mechanical power of around 3 percentage points
- The advantage of mixtures compared to pure fluids is lower than the values reported in the literature because the optimal cycle is trans-critical (the temperature glide can be exploited only in condensation)
- The little efficiency advantage is likely not sufficient to compensate the reduction of heat transfer coefficient which affects mixtures

Future works:

- Complete the analysis with a techno-economic analysis of ORCs using HCFO-1233zde and Novec[™] 649
- Apply the optimization methodology to **other heat recovery applications** (e.g., low grade heat)

POLITECNICO MILANO 1863

Roberto Scaccabarozzi

Thanks for your attention

POLITECNICO MILANO 1863

Roberto Scaccabarozzi