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Context: the ORC for WHR applications

@ ORC has gained interest in the last years for automotive WHR applications:
o Only about one-third of the fuel energy is converted into mechanical power on typical driving cycles
at full load

o Low temperature heat released through the radiator and the exhaust gases
@ Small-scale ORC plants as proposed solutions to recover waste heat:

o reduction of fuel consumption up to 12% and engine thermal efficiency improvements of 10% (Mack
Trucks, Honda, Cummins)

e no large-scale commercial ORC solutions in the automotive field are available (low robustness to
duty driving cycles, small improvements of the engine global efficiency)
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Case study: hybrid Diesel-electric intercity train

o lIssues:

o Typical intercity train trips have frequent
start/stop cycles — very large variation of
exhaust gas mass-flow rate and temperature

o Non-stationary behaviour of the engine
combustion process, variability of the
exhaust gases chemical composition,
aleatory ambient conditions etc.

— Non-deterministic ORC performance

o Need for thermodynamic optimization of
ORC subject to randomly variable
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o CYCLE CONFIGURATION AND HEAT SOURCE CHARACTERIZATION
o WORKING FLUIDS

UQ AND SENSITIVITY ANALYSIS

DETERMINISTIC OPTIMIZATION

o ROBUST OPTIMIZATION

o CONCLUSIONS
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Cycle configuration
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Heat source characterization
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Heat source characterization
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@ The heat source is modelled by means of beta probability density functions (pdfs):

Variable a b loc scale
my 0.444 | 1.009 | 0.222 kg/s | 0.284
Tw 0.847 | 0.666 5929 K 21.58
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Working fluids

o Six organic fluids, well known in ORC applications, have been selected as candidates for the
parametric study

@ The complex thermodynamic behaviour is described by multi-parameter equations of state
(EOS) based on Helmholtz free-energy, as provided by the open-source library CoolProp

Fluid Molecular weight (kg/kmol) | pc (MPa) | T (K)
R245fa 134.05 3.651 427.01
R245ca 134.05 3.941 447.57

Novec649 316.04 1.869 441.81

R11 137.37 4.394 471.06
R134a 102.03 4.059 374.21

R113 187.38 3.392 487.21
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ORC sensitivity analysis

@ The main ORC parameters are treated as uncertain — choice of suitable pdfs

Parameter Distribution Range
Tamb (K) Uniform [290-300]
Teon (K) Uniform [293.15-303.15]
cw (J/kg-K) Uniform [1000-1200]
np Uniform [0.65-0.75]
nr Uniform [0.75-0.85]
Tu.in (K) Beta [592-615]
My, in (Kg/s) Beta [0.1-0.5]

@ The uncertainties are propagated through the ORC model by performing a large number of
simulations — statistics reconstruction (mean and variance) by means of the Monte Carlo

method

@ Result for the baseline ORC configuration (pey = 0.545pc,, ATy, =8 K and AT =5 K):

Fluid ting, CoViy (%) | tiny, CoViy (%) | psy (m), CoVsy (%) | nv,. CoVy, (%)

R245fa 0.145, 4.69
R245ca 0.161, 4.50
Novec649 0.122, 4.44
R11 0.187, 4.38
R134a 0.0878, 6.94
R113 0.188, 4.23

0.357, 4.99
0.383, 4.76
0.294, 4.73
0.436, 4.65
0.238, 7.20
0.427, 4.47

0.0186, 14.2 15.8, 10.4
0.0206, 14.38 25.4,10.8
0.0392, 14.5 33.3,12.1
0.0194, 14.12 23.7, 9.66
0.0116, 13.80 3.66, 8.69
0.0287, 14.4 47.8, 10.9
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ORC sensitivity analysis
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@ Sensitivity analysis:

o the main contributions to the total variance
of the cycle performances, expressed in terms
of first order Sobol’" indices — ANOVA

o Circle diagram:
Qol — Quantity Of Interest

Circle radius proportional to the percent
contribution of the parameter to the global
variance

@ Turbine efficiency is the most influential
parameter with respect to 7, and 7y

@ Condensation temperature is the second
most influential parameter
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ORC deterministic optimization

@ Our goal: find the cycle parameters maximizing cycle efficiency!
o Global optimization in the parameter set — Single-objective Genetic Algorithm (GA)
e Optimization variables (deterministic): [pey, ATpp, AT7T]

o ORC parameters (deterministic): Tomp = 295 K, my = 0.4 kg/s, T, in = 610 K,
Teon = 303 K, ¢ = 1100 J/kg-K, np = 0.7, n7 = 0.8

o Constraints: 0.4per < pev < 0.8pcr, 0.1K < AT < 10K, 7K < ATy < 10K
@ Convergence reached after 11 generations with 40 individuals-per-generation

o Optimal individuals recalculated by UQ:

Fluid g, CoViy (%) | pny, CoViyy (%) | sy (m), CoVs (%) | pv,, CoVy, (%)
R245fa 0.158, 4.57 0.441, 5.61 0.0244, 14.3 25.0, 10.4
R245ca 0.171, 4.40 0.524, 5.42 0.0288, 14.4 40.8, 10.8

Novec649 0.129, 4.37 0.393, 5.38 0.0610, 14.6 61.8, 12.1

R11 0.201, 4.27 0.609, 5.24 0.0287, 14.1 37.4, 9.60
R134a 0.108, 5.83 0.328, 6.88 0.0131, 13.8 5.70, 8.59

R113 0.198, 4.16 0.601, 5.12 0.0445, 14.4 76.6, 10.9

E.A.BUFI,S.M.CAMPOREALE,P.CINNELLA ORC 2017 September 14, 2017 11 /15



ORC RO optimization
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Our goal: find the cycle parameters
maximising the average cycle efficiency
while minimizing its variance —
two-objective optimization problem

Global optimization in the parameter set —
Non-dominated Sorting Genetic Algorithm
(NSGA-II)

Optimization variables (deterministic):
[pev, ATpp, ATTIT]

ORC parameters (uncertain):
Tambx My, Tw,in. Teon, Cw, ne, Nt

Constraints:

0.4pcr < pev < 0.8pcr
0.1K < ATy < 10K
TK < ATy < 10K
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ORC RO optimization: results
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Case tny CoViy (%) | piny, CoViyy (%) | psy (m), CoVis. (%) | py,, CoVy, (%)
#R245fa 0.157, 4.21 0.375, 4.57 0.0190, 14.01 241, 10.3
#R245ca 0.171, 4.26 0.397, 4.49 0.0216, 14.2 40.7, 10.8
# Novec649 0.129, 4.10 0.301, 4.30 0.0458, 13.8 61.4, 11.9
#R11 0.200, 4.07 0.45, 4.25 0.0196, 14.6 35.03, 9.54
#R134a 0.108, 5.53 0.281, 5.92 0.0118, 14.2 5.76, 8.46
#R113 0.198, 3.95 0.436, 4.18 0.0294, 14.5 78.4, 11.01
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Conclusions

o Application of UQ to ORC for WHR heavy duty applications

o Sensitivity analysis showed that the expander efficiency and the condensing temperature
are the most influential parameters with respect to the thermal and exergetic efficiencies

@ Working fluids R11 and R113 provide the best performances for this application

o This behaviour has been observed also after the deterministic optimization, with an improvement in
terms of mean values and decrease of variability

@ Robust optimization succeeds in reducing performance variability under random variations of
the operating conditions

o The deterministic solution, characterized by a high mean efficiency, can be also considered as a
good compromise

o As future work, more detailed models for the heat exchanger will be considered, allowing to
account, e.g., for uncertainties on the geometries and heat exchange coefficients

@ Economic cost-functions can also be included in the multi-objective optimization problem
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Thank You for the attention!
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