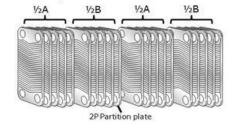
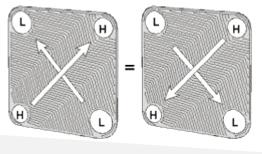

System cost and efficiency optimization by heat exchanger performance simulations

Andreas Möller, Senior Expert Application Developer Vijaya Sekhar Gullapalli, Core Software Development SWEP International AB, Landskrona, Sweden vijaya.sekhargullapalli@swep.net

Brazed plate heat exchangers – Plate pattern & executions


Parameters that can be altered in a standard corrugation pattern to obtain desired characteristics include:


- Chevron angle of the corrugation
- Pressing depth
- Corrugation pitch
- Plate aspect ratio
- Design of distribution area
- Port location
 - Flow arrangement

Execution and flow arrangement can be used to obtain desired characteristics

1P example

2P example

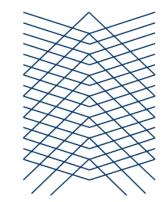
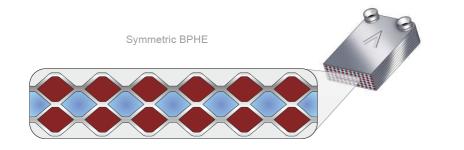
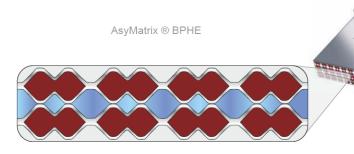
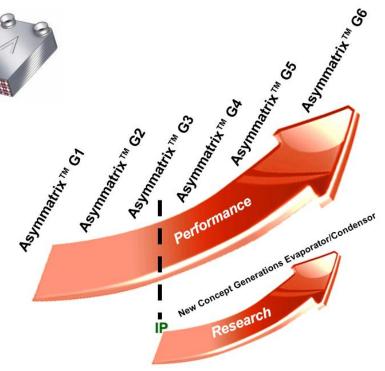




Plate mixing allows to attain intermediate thermal and hydraulic characteristics. A wide range of performance/ products can be achieved by mixing plates in various ways

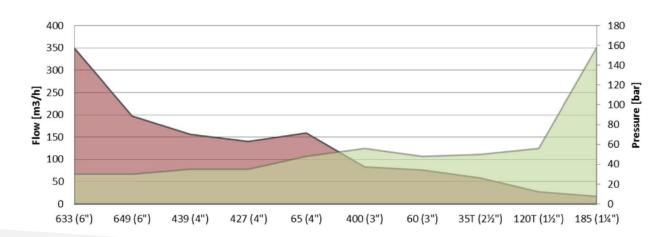
Brazed plate heat exchangers – Asymmetric plate design



Asymmetric plate design allows for flow channel optimization based on the characteristics of working media and the thermodynamic process.

For example, the thermal resistance of the working fluid is reduced by utilizing a **narrow flow path** and the flow work of the secondary fluids can be reduced using a **wider channel**.

Various **degree of asymmetry** with varying degree of volume, thermal and hydraulic characteristics are developed and tested at SWEP.


BPHE range for ORC applications

Pressure vs. flow capacity for SWEP L-XXL

■bar @ 20 °C

■m3/h Water flow

BPHEs can be used as pre-heater, evaporator, recuperator, condenser and sub-cooler. Applicable for modules rated below 200 kWe

16-45 bar pressure rating. Up to 350 m³/h water capacity, DN 150, 6"

Pressure rating degrades as a function of operating temperature. The derating at 200°C, from 20°C, is up to 25%

SNEP

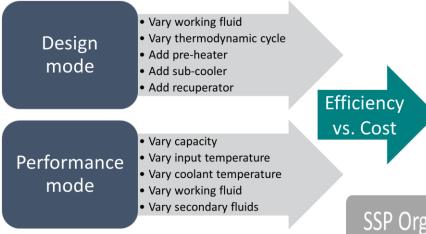
Need for simulation with detailed BPHE calculations

Design Performance			Calculate	Log (Case	Sav	e Case	E	Open	Case	>
🔊 System				11							
Select Refrigerant	E			TotalHeatTransferArea		EvapModel					Evap
Refrigerant: Solkatherm(SES3	36	[%] 24	[kW] 48.26	[m ²] 39.49	[kg/s] 2.06	B400Tx50	[kW] 500.00	(m²) 12.59	[*C] 17.00	[*C] 123.49	118.4
Pump Efficiency (%)		24	48.20	43.05	2.06	B4001x50 B439Mx56	500.00	16.15	17.33	123.49	118.
Turbine Efficiency (%)		28	48.42	44.88	2.06	8400Tx60	500.00	12.59	17.85	123.47	118.
Pump Head (m)		27	48.28	48.44	2.07	B439Mx56	500.00	16.15	17.86	123.18	118.
Evaporator Pump Efficiency (%)	75										
Condenser Pump Efficiency (%)	75	_									
Evaporator Type Standard	~										1
~											
 Evaporator 		Eva	porator D	Design							L.
		Eva	oorator D	Design							L
select Secondary Fluid 📗 Select Heat	t Exchangers			-	50						l
Select Secondary Fluid ESelect Heat BPHE: B400T;8439M	t Exchangers	Hea	t Exchan	ger: B400Tx0	50						
Select Secondary Ruid Select Heat BPHE: B400T;8439M Fluid: Water	t Exchangers	Hea	t Exchan	-	50						
Select Secondary Fluid Select Heat BPHE: B400T;8439M Fluid: Water Heat Load (kW)	t Exchangers 500	Hea Refri	t Exchan	ger: B400Tx(50						
Select Secondary Fluid Select Heat BPHE: B4001;B439M Fluid: Water Heat Load (kW) SuperHeat (K)	t Exchangers 500 5	Hea Refri Seco	t Exchan gerant: Sol	ger: B400Tx(katherm(SES36) f: Water	50 Side 1				Side 2		
Select Secondary Fluid Select Heat BPHE: B4001;8439M Fluid: Water Heat Load (kW) SuperHeat (k) Dew Temperature (*C)	t Exchangers 500 5 117	Hea Refri Seco THE	t Exchan gerant: Sol ndary Fluic RMAL DU	ger: B400Tx(katherm(SES36) f: Water FY Unit			500.0		Side 2		
Select Secondary Fluid Select Heat BPHE: B400T;B439M Fluid: Water Heat Load (kW) SuperHeat (k) Dew Temperature (°C) Secondary Inlet Temperature (°C)	t Exchangers 500 5 117 140	Hea Refri Seco THE Heat	t Exchan gerant: Sol ndary Fluic RMAL DUI Load	ger: B400Tx6 katherm(SES36) d: Water FY Unit kW	Side 1		500.0		Side 2		
Select Secondary Fluid Select Heat BPHE: B4001;8439M Fluid: Water Heat Load (kW) SuperHeat (K) Dew Temperature (°C) Secondary Inlet Temperature (°C) Secondary Outlet Temperature (°C)	t Exchangers 500 5 117 140 120	Hea Refri Seco THE Heat Inlet	t Exchan gerant: Sol ndary Fluic RMAL DUT Load Vapor Qua	ger: B400Tx6 katherm(SES36) d: Water FY Unit kW ality	Side 1		500.0		Side 2		
Select Secondary Fluid Select Heat BPHE: B4001;B439M Fluid: Water Heat Load (kW) SuperHeat (K) Dew Temperature (°C) Secondary Unlet Temperature (°C) Max Pressure Drop Ref Side (kPa)	t Exchangers 500 5 117 140 120 50	Hea Refri Seco THEI Heat Inlet Outle	t Exchan gerant: Sol ndary Fluic RMAL DUI Load Vapor Qua et Vapor Q	ger: B400Tx6 katherm(SES36) f: Water FY Unit kW ality uality	Side 1 0.000 1.000		500.0				
Select Secondary Fluid Select Heat BPHE: B4001;B439M Fluid: Water Heat Load (kW) SuperHeat (K) Dew Temperature (°C) Secondary Unlet Temperature (°C) Max Pressure Drop Ref Side (kPa)	t Exchangers 500 5 117 140 120 50 50	Hea Refri Seco THE Heat Inlet Outle	t Exchan gerant: Sol ndary Fluid RMAL DUT Load Vapor Qua et Vapor Q Temperatu	ger: B400Txt katherm(SES36) f: Water rY Unit kW ality uality uality ure °C	Side 1 0.000 1.000 17.00		500.0		Side 2 140.00		
Select Secondary Fluid EVALUATE: BPHE: B400T;B439M Fluid: Water Heat Load (kW) SuperHeat (k) Dew Temperature (°C) Secondary Inlet Temperature (°C) Secondary Outlet Temperature (°C) Max Pressure Drop Ref Side (kPa) Max Pressure Drop Secondary (kPa)	t Exchangers 500 5 117 140 120 50 50	Hea Refri Seco THE Heat Inlet Outle	t Exchan gerant: Sol ndary Fluic RMAL DUI Load Vapor Qua et Vapor Q	ger: B400Txt katherm(SES36) f: Water rY Unit kW ality uality uality ure °C	Side 1 0.000 1.000		500.0				
Select Secondary Fluid EVALUATE: BPHE: B400T;B439M Fluid: Water Heat Load (kW) SuperHeat (k) Dew Temperature (°C) Secondary Inlet Temperature (°C) Secondary Outlet Temperature (°C) Max Pressure Drop Ref Side (kPa) Max Pressure Drop Secondary (kPa)	t Exchangers 500 5 117 140 120 50 50	Hea Refri Seco THEI Heat Inlet Outle Inlet Dew	t Exchan gerant: Sol ndary Fluic RMAL DUT Load Vapor Qua et Vapor Q Temperatu Temperatu	ger: B400Txt katherm(SES36) f: Water rY Unit kW ality uality uality ure °C	Side 1 0.000 1.000 17.00 118.49	Condense			140.00		
Select Secondary Fluid Select Heat BPHE: B400T;8439M Fluid: Water Heat Load (kW) SuperHeat (k() Dew Temperature (°C) Secondary Inlet Temperature (°C) Max Pressure Drop Ref Side (kPa) Max Pressure Drop Secondary (kPa) Co Condenser	t Exchangers 500 5 117 140 120 50 50	Hea Refri Seco THEI Heat Inlet Outle Inlet Dew	t Exchan gerant: Sol ndary Fluic RMAL DUT Load Vapor Qua et Vapor Q Temperatu Temperatu	ger: B400Txt katherm(SES36) f: Water V Unit kW ality uality ure °C ure °C	Side 1 0.000 1.000 17.00 118.49	Condense			140.00		
Select Secondary Fluid Select Heat BPHE: B400T;8439M Fluid: Water Heat Load (kW) SuperHeat (k) Dew Temperature (°C) Secondary Outlet Temperature (°C) Max Pressure Drop Ref Side (kPa) Max Pressure Drop Secondary (kPa) Condenser Select Secondary Fluid Select Heat	t Exchangers 500 5 117 140 120 50 50	Hea Refri Seco THEI Heat Inlet Dew	t Exchan gerant: Sol ndary Fluic RMAL DUT Load Vapor Qua et Vapor Q Temperatu Temperatu	rger: B400Tx4 katherm(SES36) d: Water FY Unit kW ality uality ure °C ure °C orator Temperatur	Side 1 0.000 1.000 17.00 118.49	Condense			140.00		
Select Secondary Fluid Select Heat BPHE: B400T;8439M Fluid: Water Heat Load (kW) SuperHeat (k) Dew Temperature (°C) Secondary Outlet Temperature (°C) Max Pressure Drop Ref Side (kPa) Max Pressure Drop Secondary (kPa)	t Exchangers 500 5 117 140 120 50 50	Hea Refri Seco THEI Heat Inlet Dew	t Exchan gerant: Sol ndary Fluic RMAL DUT Load Vapor Qua et Vapor Q Temperatu Temperatu Temperatu rator Evapo	rger: B400Tx4 katherm(SES36) d: Water FY Unit kW ality uality ure °C ure °C orator Temperatur	Side 1 0.000 1.000 17.00 118.49	Condense			140.00		
BPHE: B400T;B439M Fluid: Water Heat Load (kW) SuperHeat (K) Dew Temperature (°C) Secondary Inlet Temperature (°C) Secondary Outlet Temperature (°C) Max Pressure Drop Ref Side (kPa) Max Pressure Drop Secondary (kPa) © Condenser Select Secondary Fluid L Select Heat	t Exchangers 500 5 117 140 120 50 50	Hea Refri Seco THEI Heat Inlet Dew	t Exchan gerant: Sol ndary Fluic RMAL DUT Load Vapor Qua et Vapor Q Temperatu Temperatu Temperatu rator Evapo	rger: B400Tx4 katherm(SES36) d: Water FY Unit kW ality uality ure °C ure °C orator Temperatur	Side 1 0.000 1.000 17.00 118.49	Condense			140.00		

The main goal is to support:

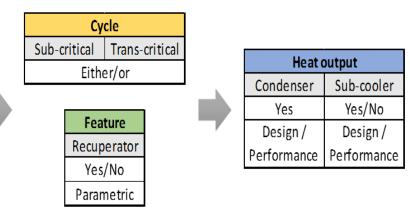
early phase decision making such as choice of thermodynamic cycle, working fluid etc.,

design phase for system design and heat exchanger selection, & post-launch phase where an existing design might be adopted to use with different heat sources


To identify which heat exchanger positions that are **beneficial operation wise** and add efficiency considering **return of investment**.

Detailed modeling of heat exchangers handles issues such as internal pinch with mixed fluid phases, maldistribution of flow within the heat exchanger at part load conditions etc., which blackbox models don't handle.

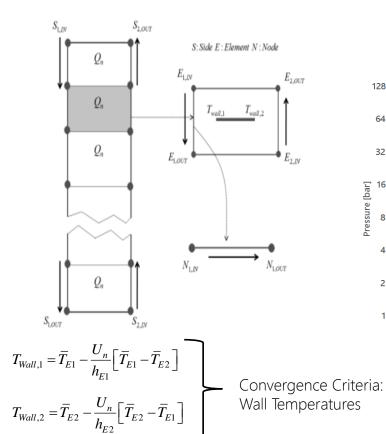
Provide a **quick and simultaneous BPHE selection tool** for ORC systems and thus preventing iterative component calculations.


Calculation modes and functional map

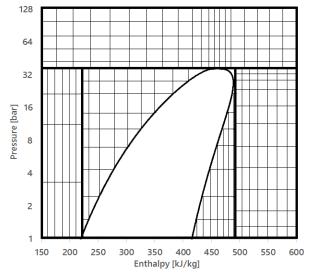
Design mode targets early phase where system design together with heat exchanger selection is conducted. **Performance calculations** target varying operating conditions for selected design.

SSP Organic Rankine Cycle Simulation – Functional Map

	Heat	input			
Pre-heater	Pre-heater Evaporator				
Yes/No	Y	Yes/No			
Design / Performance	Design / Performance	Liquid cooling / Cascaded	Design / Performance		



SIL

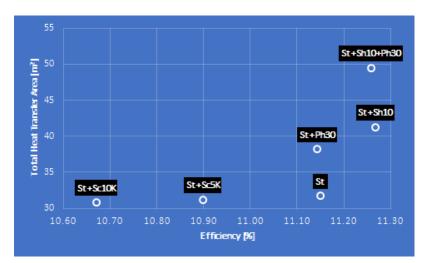

CHALLENGE FEFICIENCY

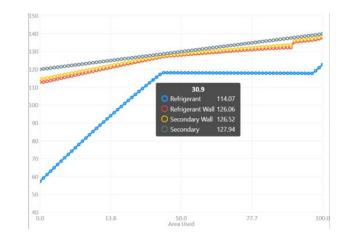
Component calculations and fluid properties

Generalized BPHE rating method

Refrigerant properties using bi-liner **interpolation** of saved property maps

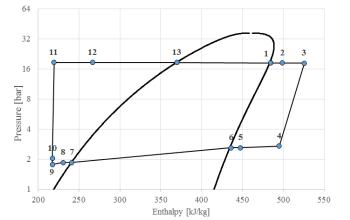
Simplified **isentropic** efficiency models are used for turbine and pump components (software is prepared to use performance maps)


Initially **21 commonly used refrigerants** in ORC systems are implemented. Super critical properties are available for neo-pentane, pentane, iso-pentane, R245fa, R134a and R507a. A large number of secondary fluids (brines, thermal oils etc.,) are included.


Steady state system solver based on the convergence of saturation points in the system

No heat loss or pressure drop outside specified components

Calculation results – state variables

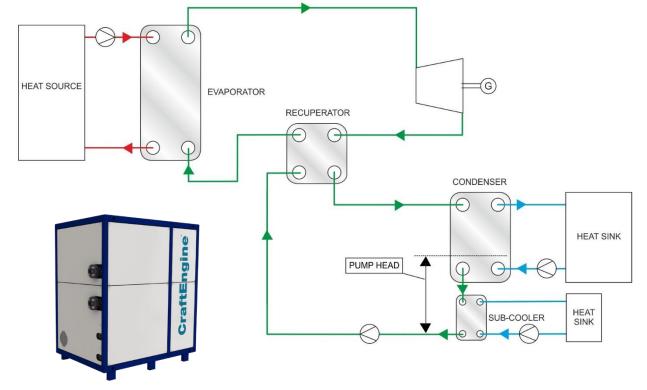


Evaporator Desig	n			
Heat Exchanger:	B400T :	x60		
Refrigerant: R245fa				
Secondary Fluid: Wate	er			
THERMAL DUTY	Unit	Side 1		Side 2
HeatLoad	kW		500.0	
Inlet Vapor Quality		0.000		
Outlet Vapor Quality		1.000		
Inlet Temperature	°C	49.69		140.00
Dew Temperature	°C	117.53		
SuperHeating	К	10.00		
Outlet Temperature	°C	127.53		120.00

Node [-] 1 2 3 4 5 6	Temperature [°C] 117.96 122.96 142.96 94.93 51.84 41.06 31.08	Pressure [bar] 18.52 18.52 18.39 2.70 2.60 2.60 1.85	Enthalpy [kJ/kg] 484.77 492.15 519.46 488.95 446.49 436.14 241.05	Entropy [kJ/(kg K)] 1.80 1.82 1.89 1.92 1.80 1.76 1.14	Density [kg/m ³] 113.51 107.83 91.92 12.35 13.85 14.49 1.321.80
, 8 9 10	29.08 19.08 19.08	1.85 1.77 1.90	238.39 225.24 225.24	1.13 1.09 1.09	1,327.36 1,354.54 1,354.58
11 12 13	19.98 51.72 118.45	18.71 18.69 18.71	226.95 269.41 370.65	1.09 1.23 1.51	1,357.09 1,268.99 1,006.95

Example of BPHE temperature profiles and state variables generated by ORC system simulation program

SNEP


Validation against experimental data

SWEP BPHEs are tested in Viking Heat Engines CraftEngine CE10, a piston based ORC system*

The tested system targets source temperatures in the range of 100°C to 200°C and heat input of 25 to 150 kW*

The thermal efficiency is in the range of 7-12% and electric efficiency in the range of 6-11%

Variable loads tested using **R134a** and **R245fa**. Heat sink temperatures range from 12°C to 35°C and a heat input of 80-100 kW

CraftEngine CE10 Viking Heat Engines

SNEP

Validation against experimental data

R134a and R245fa operated up to 73% and 82% of the critical pressure respectively.

System efficiency/ output predicted with an accuracy of -4 to 6% for low temperature applications and +5-14% for medium temperature applications.

In evaporator, low temperature cases uses up to 60% area for evaporation and 20% each for pre and super heat. In medium temperature cases, 10% area is used for evaporation and up to 80% area for super heat.

CHALLENGE EFFICIENCY

Work	Expander			Output		
fluid	speed	p _{evap} [bar]	T _{in} [°C]	[kŴ]	Deviation	
	2/3	23,7	100	7,7	-3 %	
	2/3	23,5	99	6,7	-4 %	
	2/3	23,7	100	6,04	0%	
R134a	Full	29,4	112	10,17	3 %	
	Full	29,6	112	8,99	6 %	
	Full	29,5	112	8,85	6 %	
	Full	23,4	105	9,09	4 %	
	Full	29,7	180	16,5	9 %	
R245fa	Full	26,0	154	10,3	5%	
	2/3	21,3	180	10,7	14 %	*

Measured data and deviation in mechanical output from the simulation

*with correction to evaporator super heat in received data, the deviation is in the range of 10%

R134a:: $p_{crit} = 40,6 \text{ bar}$ $T_{crit} = 101,1$	C C
--	--------

Conclusions

A steady state ORC system simulation program is developed with focus on brazed plate heat exchanger components. Detailed modeling is used for heat exchangers and approximate models are used for rest of the components

The developed tool can be used to **optimize efficiency and heat exchanger component cost** by varying thermodynamic cycles and working fluids.

The developed tool **provides the accuracy needed** to replicate the **real operation performance** of the studied ORC system. This can be used to evaluate different operating conditions as long as the performance difference is greater than 5%.

With **further calibration** of the physical models at higher temperatures, combined with handling of **non-converging parameter** setup, the program can provide quick (about 10s per simulation), powerful and reliable system development **support to a wide range of ORC systems**.

