

Open - Minded

Pumped Heat Electricity Storage: Potential Analysis and ORC Requirements

Institute of Combustion and Gas Dynamics Chair of Thermodynamics

Dennis Roskosch, Burak Atakan

ASME ORC 2017 - Milano

September 15, 2017

Motivation

UNIVERSITÄT D_U_I_S_B_U_R_G

Open - Minded

Rising share of renewable energy sources in power generation

Increasing fluctuations within the electrical grid

Large scale energy storage problem

Pumped heat electricity storage (PHES)

UNIVERSITÄT DUISBURG ESSEN

Open - Minded

Pre-studies: models

UNIVERSITÄT DUISBURG ESSEN

Open - Minded

¹Thess A. Thermodynamic efficiency of pumped heat electricity storage. Physical review letters 2013;111(11):110602. ²Roskosch D, Atakan B. Potential Analysis of Pumped Heat Electricity Storages Regarding Thermodynamic Efficiency. Proceedings of Ecos 2017;30

Roskosch et al.

Transfer to Rankine-cycles

- Process temperatures from pre-study
- $U_{PC} = 10 \cdot U_{SP}$
- Heat pump & ORC
 - full evaporation, condensation
 - ideal compressor and expander
- For heat pump also
 - expansion: throttle or expander
- Now: Fluid properties get important
 - How to select?
 - Inverse-Engineering-approach

Fluid property model

- Peng-Robinson EOS
- ideal gas heat capacity
- $X=[T_c, p_c, \omega, c_{p,0}, dc_p/dT]$

Constraints

- Realistic range for every parameter
- 0.05 Mpa $\leq p_{sys} \leq 5$ Mpa
- no condensation in expander (ORC) and compressor (heat pump)

Why using optimal fluid parameters?

Open - Minded

- Evaluation of promising operating and boundary conditions without the influence of a **specific** fluid
- better comparability of the result (e.g. storage temperature)
- finding limits in operating conditions with respect to available chemical compounds

Results: efficiency and power output

UNIVERSITÄT DUISBURG ESSEN

Results: efficiency and power output

UNIVERSITÄT DUISBURG ESSEN

Open - Minded

Roskosch et al.

Results: efficiency and power output

UNIVERSITÄT DUISBURG ESSEN

Roskosch et al.

Influence of superheating

UNIVERSITÄT DUISBURG ESSEN

Open - Minded

Influence of superheating: Results

Constant evaporation temperature:

- Ψ increases slightly
- heat transfer area increases stronger

Reduced evaporation temperature:

Ψ decreases

Superheating is not useful!

- PHES is a promising application of an ORC and worth further investigations
- Carnot-cycles were transferred to Rankine-cycles using optimal fluids
- Contrary to Carnot-cycles: Ψ decreases with increasing T_{storage}
 - Expansion of the heat pump
 - boiling of the fluid (ORC)
- Superheating at expander inlet is not useful
- Above T_{st} = 430 K multistage cycles are probably needed

Outlook

Open - Minded

- Expander instead of throttle in heat pump?
- Fluid boiling in ORC: Regenerative feed water heater?
- Influence of irreversibilities of the different components
- identifying efficient real fluids
- sensible heat storages
- storage modelling

UNIVERSITÄT DUISBURG ESSEN

Open - Minded

Thank You

Roskosch et al.

Full Carnot-cycles: Ψ=1

PHES (T_{st}>T_{sur})

storage $T_{st} = T_{H}$ $Q_{\rm H}^ Q_{\rm H}^+$ W^- HP ORC Ż_L[−] Q_{L}^{+} surrounding $T_{sur} = T_{I}$

storage efficiency / roundtrip efficiency $\Psi = \frac{W^{-}}{W^{+}}$ combining two Carnot-cycles $\Psi = \frac{W^-}{W^+} = \frac{\eta_{ORC} \cdot Q_H^-}{Q_H^+} = \eta_{ORC}^c \cdot \varepsilon_{HP}^c$ €_{HP} $\Psi = \frac{T_H - T_L}{T_H} \cdot \frac{T_H}{T_H - T_L} = 1$

Reduced power cycle (pre-study)

Roskosch et al.

ASME ORC 2017

UNIVERSITÄT

Open - Minded

Pre-studies: results

Pre-studies: results

Boundary conditions

- $P = 0.8 \cdot P_{max}$
- t_{charging} = t_{discharging},
- all heatexchangers:
 - A = 4 m²
 - $U = 1000 \text{ Wm}^{-2}\text{K}^{-1}$

Roundtrip efficiency vs. power output

UNIVERSITÄT DUISBURG ESSEN

Open - Minded

• Requiring P_{max} is very costly with respect to Ψ .

Single cycles

UNIVERSITÄT DUISBURG ESSEN

UNIVERSITÄT DUISBURG ESSEN

Open - Minded

Open - Minded

parameter	variable range
critical temperature, [K]	305 ≤ T _c ≤ 700
critical pressure, [MPa]	$3 \le p_c \le 10$
acentric factor	$0.1 \le \omega \le 0.7$
isobaric heat capacity (ideal gas) at 350 K, [J mol ⁻¹ K ⁻¹]	35 ≤ c _{p,350} ≤ 150
slope of isobaric heat capacity at 350 K, [J mol ⁻¹ K ⁻²]	$0.09 \le (dc_p/dT)_{350} \le 0.45$
system pressures, [MPa]	0.05 ≤ p ≤ 5.0