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Introduction (1/2) *
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- Heavy Duty Diesel Engines (HDDES) reject a considerable amount
of energy to the ambient

- In order to meet the U.S. Department of Energy (DOE) break
thermal efficiency (BTE) goals, WHR by means of ORCs has been
identified by U.S. engine manufacturers as viable solution

- Research on ORC systems applied to passenger and commercial
vehicles has flourished in recent years

O Subcritical and transcritical cycles (e.g., Amicabile et al. 2015)
U Cascade cycles (e.g., Chen et al. 2017)

9/15/2017 D. Ziviani (dziviani@purdue.edu)



Introduction (2/2) *

RAY W. HERRICK =]

I ——
LABORATORIES

9/15/2017

- Cost, complexity, environmental concerns and safety considerations

are major issues that hold back OEMs from adopting ORCs in
vehicles

- Return of investment period for the end customer is not highly

attractive by using current technology (3 to 4 years payback period)

- An affordable Rankine cycle (ARC) system is proposed in order to

obtain real benefits of WHR on the road and reduce the costs by 50%
with a targeted payback period of 1.4 to 2 years

- A novel ORC architecture proposed within the ARC project is based

on using the engine coolant as the working fluid.

D. Ziviani (dziviani@purdue.edu) 4



Affordable Rankine Cycle (1/2)

RAY W. HERRICK=]PP
LABORATORIES

EGR HEX
]
| =2
EGR loop Tail Pipe
HEX

Exhaust

/\/

T L
T° Fu:al in
Water/EG | = | 1 Expander
@ Pump Engine
1, 5
Water/EG Loop

(><) Radiator

9/15/2017 D. Ziviani (dziviani@purdue.edu)



Affordable Rankine Cycle (2/2)
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O Limitations arise concerning the
maximum heat rejection rate.

O To ensure normal operation of the
truck engine, the following

constraints are taken into account:

- Return temperature of engine
recirculating gases

- Maximum engine coolant
temperature at expander inlet

- Exhaust tail pipe boliler exit
temperature
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Thermophysical Properties of *
Water/EG Mixture (1/2)
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a The working fluid is a binary mixture of water and ethylene glycol.

O Few studies are available about thermodynamic and transport properties,
e.g., Teja et al. 2003 and Dai et al. 2011.

O As the mixture phase-change is an important aspect, VLE conditions
need to be obtained to understand the effect of concentration shifting.

a Original Water/EG mixture REFPROP flle had ISsues:
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Thermophysical Properties of
Water/EG Mixture (2/2)
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Thermodynamic Cycle Model (1/2)

QO A steady-state cycle model has been developed in EES
Q Heat inputs are determined from the engine operation

O The total heat rate available at the EGR and at the exhaust tail pipe:

Q = eyxmAh
O The heat rejected by the radiator :
Qcond — mwater/EGAhradiator
O Pump and expander are modeled by assuming the isentropic efficiencies

O The cycle performance and the benefits of the ARC system are quantified
in terms of ORC thermal efficiency and Break Power (BP) improvement:

_ I/Vexp — Wpump _ VVexp _ Wpump
NORC,net = : BP = 7
QEGR,in _ QTP,in engine
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Thermodynamic Cycle Model (2/2)
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a Cycle model assumptions:

Parameter Value Description
Mixture concentration (mass fraction) [0.5-0.5] Engine coolant concentrations
Twater_EG.max. °C 220-300 Issues with thermal stability above 200 *C
Pmax . kPa 2000 Expander limitations
Tail pipe HEX ATpp, °C 5 Design choice
Peond. KPa variable Related to radiator operating conditions
Tail pipe HEX ATpp, °C 3 Design choice
Minimum expander inlet quality, - 0.5 Design choice
Mis,exps - 0.6-0.8 Typical range for expanders |9]
Mis,pump ~ 0.6 Design choice
0 Engine operating conditions:
Parameter #1 #2 #3 #4 #5 #6 #7 #8
Tegrin. °C 3584 464.2 543.0 611.0 437.1 513.2 654.9 428.3
Trpin. °C 2724 326.4 3547 389.1 208.4 328.5 415.2 206.2
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Effect of the Engine Operating
Conditions (1/2)
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Effect of the Engine Operating
Conditions (2/2)
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O Variation of the water-EG mixture concentration
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Effect of Expander Internal
Volume Ratio (1/2)
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Q PD expanders are characterized by fixed internal volume ratio ry i,
a The theoretical internal specific work can be computed as:

Win,th = Wis,exp + Wy =const,exp

Wisexp = hsu(Tsuw Psu) — hin(Vin, Ssu)

Wy=constexp = Vin (pin - pex)

Vin = Ty,in Vs

O In the case of roots expanders:

Win,th = Wv=constexp = Vs(pin - pex)

O The actual specific work is affected by mechanical losses:

Win = Win thlmech
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Effect of Expander Internal *
Volume Ratio (2/2)
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Q To evaluate the influence of the expander volume ratio on the

performance of the ARC running with a water/EG (0.5-0.5)
mixture:

Pcond = 110 kPa; peyap = 1000 kPa, 1500 kPa, 2000 kPa
u TEGR,in — 430 C, TTP - 2944 C
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Conclusions A
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Water-EG mixture has been proposed as working fluid of an ORC
for WHR within heavy-duty trucks

A thermodynamic cycle model has been developed to investigate
the potential improvements on the engine BTE.

Simulation results showed that the employment of water-EG is
heavily conditioned by engine operating conditions and high
temperature limitations

The maximum BP improvement obtained was 6.94% for engine
operating point #7

Although the initial parametric studies showed some potential for
ARC architecture, additional work is needed to improve the
performance especially under dynamic conditions

A dynamic cycle model with different control strategies will be
further developed
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O WHR from a vehicle is a highly transient problem

QO The optimization of the ORC during real operation requires a proper
control strategy

O The development of a control strategy can be done by employing a
dynamic model

O Since HXs influence the transient behavior of an ORC significantly, two

dynamic models have developed

= Moving Boundary Method (MB)
= Finite Volume Method (FV)

O Challenges: binary-mixture, accuracy vs. computational speed, switching
algorithm, numerical instabilities among others
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O Comparison between experimental and numerical results for
FVM under dynamic conditions:
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a FV method is considered in this presentation |
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a Profiles of model inputs (T,: water temperatures, m,: mass flow rates
of water)

O Profiles of model outputs and experiments (m,: refrigerant flow rate)
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