Advanced Materials for the Impeller in an ORC radial micro-turbine

Isaias Hernandez Hao Liu Christopher Wood

meuniversity of m

Outline

- 1. Motivation
- 2. State of the art
- 3. Aim
- 4. Methods
- 5. Set-up
- 6. Results
- 7. Conclusion

1.Motivation

Motivation

World Energy Consumtion 2013

Gas ~ 0.05 £/kwh Electricity ~ 0.17 £/kWh 0.2 kg CO2/kwh 0.5 kgCO2/kWh

Problem Exploration

Problem Exploration

micro-CHP typical costs

The expander!

2.State of the art

State of the art

Previous Work

Research

AM

Aim

Turbomachinery

The University of Nottingham

Highperformance materials

Mass production techniques

Novel applications

Production Cost reduction 50% ഗ て

The concept had first to be proven in the lab

4.Methods

Methods

Dieter's product development method:

Methods

Flow Chart of the Process

5.Set-up

The University of **Nottingham**

Temperature [°C]	Pressure [Bara]
Mass flow [kg/s]	Enthalpy [kJ/kg]

Mean-line design

- ✓ 1.5 kW gross
- ✓ 36,000 rpm
- ✓ 49mm diameter
- ✓ 70% efficiency (Suhrmann)

The University of **Nottingham**

Fluid Structure Interaction

One-way coupling

Fluid dynamics

- RANS steady state
- Rotational symmetry
- k-omega turbulence
- Real gas REFPROP EoS

Static-Structural

- Elastic
- Isotropic material properties
- Loads
 - Pressure-velocity field
 - Rotational speed

Studied Scenarios

6.Results

Total temperature

The University of **Nottingham**

Computational Fluid Dynamics

- Impeller Total-total Efficiency ~86%
- Full load: smooth flow
- Rotor blocked: Pressure face of the blade is under stress
- Overspeed: Suction face of the blade is under stress

27% Over-speed condition

Structural Analysis

- Finite Element Analysis
- Blade loading has minimum effect
- Centrifugal forces limit the structural strength

Results

Comparison

Results

Isaias Hernandez Carrillo

6.6.6

SET

HOLD

Prof. Hao Liu Dr. Christopher Wood

7.Conclusion

Conclusion

Findings!

The University of Nottingham

- 2. Competitive performance can be achieved: Efficiency around **70%**
- 3. Advanced materials = **Broad range** of plastics and **composites** may be used
 - ✓ Low temperature = Allow Plastics to be used
 - ✓ Up to 11% **stronger** than aluminium = suitable
 - ✓ 25-50% less expensive = **cost effective**
 - ✓ Up to 50% Lighter = lower inertia => longer lifespan of bearings

Gracias

Thank you