IV International Seminar on ORC Power Systems 13 – 15th September, 2017, Milan, Italy

Integrated computer-aided working-fluid design and thermoeconomic ORC system optimisation

MT White, OA Oyewunmi, MA Chatzopoulou, AM Pantaleo, AJ Haslam and CN Markides

Clean Energy Processes (CEP) Laboratory Department of Chemical Engineering Imperial College London South Kensington Campus, London, SW7 2AZ, UK

Project aims and objectives

Key challenges in ORC system design:

- Identification of optimal working fluids
- Development of optimised systems based on thermoeconomic analyses
- Explore novel cycle architectures to enhance system performance

Research aim:

Develop an advanced CAMD-ORC optimisation framework based on SAFT- γ Mie capable of evaluating advanced cycle architectures, system operation parameters and fluids based on thermoeconomic performance indicators

Presentation objectives:

- To introduce computed-aided molecular design (CAMD) within the context of ORC optimisation
- To apply thermoeconomic analysis within a CAMD-ORC framework

White et al., ORC2017

Computer-aided molecular design (CAMD)

White et al., ORC2017

13 – 15th September

CAMD-ORC model

Molecular-based, free-energy equation of state: $A^{\text{assoc.}}$ $\frac{A(m,\sigma,\lambda,\varepsilon,u^{\text{assoc.}})}{NkT}$ A^{chain} ideal mono. δ NkT NkT NkT NkT Association term $\phi(r$ Real gas term, monomers, Ideal gas term EoS for hard spheres

Group-contribution methods: SAFT- γ Mie

[1] V. Papaioannou et al., 2014, J. Chem. Phys. [2] S. Dufal et al., 2014, J. Chem. Eng. Data. [3] T. Lafitte et al., 2013, J. Chem. Phys.

Grouping of monomers into chains Chain term

Mie potential

δ+

White et al., ORC2017

13 – 15th September

Imperial College London

White et al., ORC2017

13 – 15th September

Group-contribution methods: Transport properties

- Transport properties (k, μ, σ) are required to size heat exchangers
- Transport properties are not available from SAFT- γ Mie
- Group-contribution methods are sought that are:
 - Applicable to a large range of fluids
 - Suitable for the functional groups used within the CAMD-ORC model
 - Straightforward to implement
- Various methods have been implemented in the CAMD-ORC model (White *et al.*, 2017)
- Critical properties (T_{cr}, P_{cr}, V_{cr}) are estimated using Joback and Reid

	Liquid phase	Vapour phase
Dynamic viscosity	Joback and Reid (<i>n</i> -alkanes) Sastri-Rao (branched alkanes)	Reichenberg
Thermal conductivity	Sastri	Chung
Surface tension	Sastri-Rao	

White et al., Energy Conversion and Management, in press (2017).

ORC thermodynamic modelling

- Simple, sub-critical, non-regenerative ORC systems
- Energy balance applied to main system components (pump, evaporator, expander, condenser)
- Defined heat source and sink (temperature, mass-flow rate and specific-heat capacity)
- Fixed pump and expander efficiencies, $\eta_{\rm p}$ and $\eta_{\rm e}$
- ORC variables:
 - Condensation temperature, T_1
 - Reduced evaporation pressure, $P_{\rm r}$
 - Evaporator pinch point, PPh
 - Expander inlet condition parameter, z
- Constraints:
 - o Minimum evaporator pinch point, PPh,min
 - Minimum condenser pinch point, *PP*_{c,min}
 - Condensation pressure cannot be sub-atmospheric
 - Expansion cannot be into the two-phase region

Component sizing

- Evaporator and condenser units selected are of tube-in-tube construction
- Heat transfer coefficient (HTC) and heat-transfer areas (HTA) as functions of Nusselt numbers
- Evaporator is split into 3 sections:
 - Preheating section
 - Evaporating section
 - Superheating section
- Condenser is split into 2 sections:
 - Desuperheating section
 - Condensing section
- Each section is discretised spatially to account for changes in working-fluid properties over the length of the heat exchanger

White et al., ORC2017

Component costing

 Pump, pump motor and heat exchangers are costed using the correlations proposed by Seider *et al.* [1]:

$$C_p^0 = F \exp(Z_1 + Z_2 \ln X + Z_3 \ln(X)^2 + Z_4 \ln(X)^3 + Z_5 \ln(X)^4)$$

• Expander costed using the correlation proposed by Turton et al. [2]:

$$C_p^0 = F 10^{(Z_1 + Z_2 \log X + Z_3 \log(X)^2)}$$

- *X* the sizing attribute (power, heat-transfer area etc.)
- *F*, Z_n correlation coefficients
- Costs converted to todays prices using the CEPCI

[1] Seider et al., 2009, Product and Process Design Principles – Synthesis, Analysis and Evaluation.
[2] Turton et al., 2009, Analysis, Synthesis and Design of Chemical Processes.

Subject to:

Optimisation

White *et al.*, ORC2017 13 – 15th September

 $\max \{ \dot{W}_{n}(\mathbf{x}, \mathbf{y}) \}$ $g(\mathbf{x}, \mathbf{y}) \le 0 ;$ $h(\mathbf{x}, \mathbf{y}) \le 0 ;$ $\mathbf{x}_{\min} \le \mathbf{x} \le \mathbf{x}_{\max} ;$

 $y_{\text{min}} \leq y \leq y_{\text{max}}$

- CAMD-ORC framework developed in the gPROMS modelling environment
- MINLP optimisation solved using built-in outer approximation algorithm OAERAP

White et al., ORC2017

13 – 15th September

Case study

Definition

- Three heat-source temperatures considered: 150, 250 and 350 °C
- Assumptions for waste-heat recovery case study:

$\dot{m}_{ m h}$ kg/s	c _{p,h} kJ∕(kg K)	T _{ci} °C	<i>ṁ_c</i> kg/s	c _{p,c} kJ/(kg K)	$\eta_{ m p}$	$\eta_{ m e}$	PP _{h,min} °C	PP _{c,min} °C	P _{1,min} bar
1.0	4.2	15	5	4.2	0.7	0.8	10	5	0.25

• Alongside the ORC variables $(T_1, p_r, \Delta T_{sh}, PP_h)$ the effect of the number of >CH₂ groups on ORC performance is investigated for four fluid families

<i>n-</i> alkanes	methyl alkanes
$CH_3 - (CH_2)_n - CH_3$	$(CH_3)_2 - CH - (CH_2)_n - CH_3$
1-alkenes	2-alkenes
$CH_2 = CH - (CH_2)_n - CH_3$	$CH_3 - CH = CH - (CH_2)_n - CH_3$

• The aim is to maximize the net power output from a basic ORC system

13 – 15th September

Thermodynamic results

Increasing heat-source temperature \rightarrow Increasing system size

13 – 15th September

Thermodynamic results

Component sizing results: Heat transfer areas

Increasing heat-source temperature \rightarrow Increasing system size \rightarrow Increased HTA

Component sizing results: Heat transfer areas

13 – 15th September

Component sizing results: 250 °C, *n*-alkane

13 – 15th September

Component sizing results: 250 °C, *n*-alkane

13 – 15th September

Component sizing results: 250 °C, *n*-alkane

Maximise evaporation pressure More superheating required Pinch at preheater inlet \rightarrow Minimise two-phase heat transfer

- \rightarrow Larger superheater but high ΔT
- → Small temperature differences

16% reduction in power output

16% reduction in heat-transfer area

13 – 15th September

Component sizing results: 250 °C, *n*-alkane

Reduced evaporation pressure No superheating required Not pinched at preheater inlet

- \rightarrow More two-phase heat transfer
- \rightarrow No superheater required
- \rightarrow Higher temperature differences

13% reduction in power output

51% reduction in heat-transfer area

Thermoeconomic results

Increasing heat-source temperature \rightarrow Increasing system size \rightarrow Reduced SIC

Imperial College London

Thermoeconomic results

Imperial College London

Thermoeconomic results

Minimising SIC can identify different optimal working fluids

Imperial College London

Conclusions

- CAMD facilitates an integrated approach to working fluid and ORC system optimisation
- SAFT- γ Mie and group-contribution transport property methods are proven to be suitable for use within a CAMD-ORC framework
- Component sizing and costing models have been implemented within the existing CAMD-ORC framework
- Optimal thermodynamic cycles have large heat-transfer area requirements
- Fluid selection based on SIC identifies different optimal working fluids:

•	150 °C heat source	\rightarrow isobutane	SIC = 4.03 £/W
•	250 °C heat source	→ 2-pentene	SIC = 2.22 £/W
•	350 °C heat source	→ 2-hexene	SIC = 1.84 £/W

- This highlights the importance of considering thermoeconomic performance indicators
- **Next steps:** Implement multi-objective optimisation into the CAMD-ORC model

IV International Seminar on ORC Power Systems 13 – 15th September, 2017, Milan, Italy

Thank you for listening.

MT White, OA Oyewunmi, MA. Chatzopoulou, AM Pantaleo, AJ Haslam and CN Markides

Corresponding author: c.markides@imperial.ac.uk

Clean Energy Processes (CEP) Laboratory Department of Chemical Engineering Imperial College London South Kensington Campus, London, SW7 2AZ, UK