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Project aims and objectives 

Key challenges in ORC system design: 

– Identification of optimal working fluids 

– Development of optimised systems based on thermoeconomic analyses 

– Explore novel cycle architectures to enhance system performance 

 

Research aim: 

Develop an advanced CAMD-ORC optimisation framework based on SAFT-γ Mie 
capable of evaluating advanced cycle architectures, system operation parameters 
and fluids based on thermoeconomic performance indicators 

 

Presentation objectives: 

– To introduce computed-aided molecular design (CAMD) within the context of 
ORC optimisation 

– To apply thermoeconomic analysis within a CAMD-ORC framework 
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Computer-aided molecular design (CAMD) 
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• Maximise/minimise objective function
• Integer optimisation variables: working fluid

• Continuous variables: thermodynamic cycle

• Binary variables: cycle architecture
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CAMD-ORC model 
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• Molecular-based, free-energy equation of state: 

 

Group-contribution methods: SAFT-𝜸 Mie 
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Group-contribution methods: Transport properties 
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• Transport properties (𝑘, 𝜇, 𝜎) are required to size heat exchangers 

• Transport properties are not available from SAFT-𝛾 Mie 

• Group-contribution methods are sought that are: 

o Applicable to a large range of fluids 

o Suitable for the functional groups used within the CAMD-ORC model 

o Straightforward to implement 

• Various methods have been implemented in the CAMD-ORC model (White et al., 2017) 

• Critical properties (𝑇cr, 𝑃cr, 𝑉cr) are estimated using Joback and Reid 

Liquid phase Vapour phase 

Dynamic viscosity 
Joback and Reid (n-alkanes)  

Sastri-Rao (branched alkanes) 
Reichenberg 

Thermal conductivity Sastri Chung 

Surface tension Sastri-Rao 

White et al., Energy Conversion and Management, in press (2017). 



ORC thermodynamic modelling 
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• Simple, sub-critical, non-regenerative ORC systems 

• Energy balance applied to main system components (pump, evaporator, expander, 

condenser) 

• Defined heat source and sink (temperature, mass-flow rate and specific-heat capacity) 

• Fixed pump and expander efficiencies, 𝜂p and 𝜂e 

• ORC variables: 

o Condensation temperature, 𝑇1 

o Reduced evaporation pressure, 𝑃r 
o Evaporator pinch point, 𝑃𝑃h 

o Expander inlet condition parameter, 𝑧 

• Constraints: 

o Minimum evaporator pinch point, 𝑃𝑃h,min 

o Minimum condenser pinch point, 𝑃𝑃c,min 

o Condensation pressure cannot be sub-atmospheric 

o Expansion cannot be into the two-phase region 



Component sizing 

White et al., ORC2017  

13 – 15th September 

• Evaporator and condenser units selected are of 

tube-in-tube construction 

• Heat transfer coefficient (HTC) and heat-transfer 

areas (HTA) as functions of Nusselt numbers 

• Evaporator is split into 3 sections: 

o Preheating section 

o Evaporating section 

o Superheating section 

• Condenser is split into 2 sections: 

o Desuperheating section 

o Condensing section 

• Each section is discretised spatially to account for 

changes in working-fluid properties over the 

length of the heat exchanger 

 



Component costing 
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• Pump, pump motor and heat exchangers are costed using the correlations 
proposed by Seider et al. [1]: 

 

𝐶𝑝
0 = 𝐹 exp 𝑍1 + 𝑍2 ln 𝑋 + 𝑍3 ln 𝑋 2 + 𝑍4 ln 𝑋 3 + 𝑍5 ln 𝑋 4  

 

• Expander costed using the correlation proposed by Turton et al. [2]: 

 

𝐶𝑝
0 = 𝐹10(𝑍1+𝑍2 log 𝑋+𝑍3 log 𝑋 2)  

 

  𝑋   the sizing attribute (power, heat-transfer area etc.) 

  𝐹, 𝑍𝑛   correlation coefficients 

 

• Costs converted to todays prices using the CEPCI 

[1] Seider et al., 2009, Product and Process Design Principles – Synthesis, Analysis and Evaluation. 

[2] Turton et al., 2009, Analysis, Synthesis and Design of Chemical Processes. 
 



Optimisation 
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max  𝑊 n(𝐱, 𝐲)  

Subject to: 

𝑔 𝐱, 𝐲 ≤ 0 ; 

 

ℎ 𝐱, 𝐲 ≤ 0 ; 

 

𝐱min ≤ 𝐱 ≤ 𝐱max ; 

 

𝐲min ≤ 𝐲 ≤ 𝐲max  

 

• CAMD-ORC framework developed in the gPROMS modelling environment 

 

• MINLP optimisation solved using built-in outer approximation algorithm OAERAP 

 



 

 

 

 

 

Case study 
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Definition 

• Three heat-source temperatures considered: 150, 250 and 350 °C 

• Assumptions for waste-heat recovery case study: 

 

 

 

 

• Alongside the ORC variables (𝑇1, 𝑝r, Δ𝑇sh, 𝑃𝑃h) the effect of the number of 

>CH2 groups on ORC performance is investigated for four fluid families 

 

 

 

 

 

• The aim is to maximize the net power output from a basic ORC system 
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𝑚 h 

kg/s 

𝑐p,h 

kJ/(kg K) 

𝑇ci 
 °C 

𝑚 c 
kg/s 

𝑐p,c 

kJ/(kg K) 

𝜂p 𝜂e 𝑃𝑃h,min 

 °C 

𝑃𝑃c,min 

 °C 

𝑃1,min 

bar 

1.0 4.2  15 5 4.2 0.7 0.8 10 5 0.25 

n-alkanes methyl alkanes 

CH3 – (CH2)n – CH3 (CH3)2 – CH – (CH2)n – CH3 

1-alkenes 2-alkenes 

CH2 = CH – (CH2)n – CH3 CH3 – CH = CH – (CH2)n – CH3 



Thermodynamic results 
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150 °C 250 °C 

350 °C 

Increasing heat-source temperature  Increasing system size  



Thermodynamic results 

White et al., ORC2017  

13 – 15th September 

 

n-propane 

35.2 kW 

2-pentene 

136.7 kW 

2-hexene 

219.0 kW 

150 °C 250 °C 

350 °C 



Component sizing results: Heat transfer areas 
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150 °C 250 °C 350 °C 

Increasing heat-source temperature  Increasing system size  Increased HTA 



Component sizing results: Heat transfer areas 
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Maximum power output 

Highest heat-transfer area requirements 

150 °C 250 °C 350 °C 



Component sizing results: 250 °C, n-alkane 
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n-butane 

Cn = 4 

n-pentane 

Cn = 5 

n-hexane 

Cn = 6 



Component sizing results: 250 °C, n-alkane 
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n-butane 

Cn = 4 

n-pentane 

Cn = 5 

n-hexane 

Cn = 6 

Maximise evaporation pressure   Minimise two-phase heat transfer  

Minimise superheating     Minimise vapour heat transfer 

Pinch at preheater inlet    Small temperature differences 

 

Maximise power output    Maximum heat-transfer area 



Component sizing results: 250 °C, n-alkane 
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n-butane 

Cn = 4 

n-pentane 

Cn = 5 

n-hexane 

Cn = 6 

Maximise evaporation pressure   Minimise two-phase heat transfer  

More superheating required    Larger superheater but high ΔT 

Pinch at preheater inlet    Small temperature differences 

 

16% reduction in power output 16% reduction in heat-transfer area 



Component sizing results: 250 °C, n-alkane 
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n-butane 

Cn = 4 

n-pentane 

Cn = 5 

n-hexane 

Cn = 6 

Reduced evaporation pressure   More two-phase heat transfer  

No superheating required     No superheater required 

Not pinched at preheater inlet   Higher temperature differences 

 

13% reduction in power output 51% reduction in heat-transfer area 



Thermoeconomic results 
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150 °C 250 °C 350 °C 

Increasing heat-source temperature  Increasing system size  Reduced SIC 



Thermoeconomic results 
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150 °C 250 °C 350 °C 

isobutane 

4.03 £/W 

2-pentene 

2.22 £/W 

2-heptene 

1.84 £/W 



Thermoeconomic results 
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150 °C 250 °C 350 °C 

Minimising SIC can identify different optimal working fluids 

isobutane 

4.03 £/W 

2-pentene 

2.22 £/W 

2-heptene 

1.84 £/W 
↓𝑾 𝐧 = 4.9% ↓𝑾 𝐧 = 0% ↓𝑾 𝐧 = 2.3% 



Conclusions 
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• CAMD facilitates an integrated approach to working fluid and ORC system optimisation 

• SAFT-𝛾 Mie and group-contribution transport property methods are proven to be 

suitable for use within a CAMD-ORC framework 

• Component sizing and costing models have been implemented within the existing 

CAMD-ORC framework 

• Optimal thermodynamic cycles have large heat-transfer area requirements 

• Fluid selection based on SIC identifies different optimal working fluids: 

• 150 °C heat source   isobutane  SIC = 4.03 £/W 

• 250 °C heat source   2-pentene   SIC = 2.22 £/W 

• 350 °C heat source   2-hexene  SIC = 1.84 £/W 

• This highlights the importance of considering thermoeconomic performance indicators 

• Next steps: Implement multi-objective optimisation into the CAMD-ORC model 



Thank you for listening. 

MT White, OA Oyewunmi, MA. Chatzopoulou, AM Pantaleo, AJ Haslam and CN Markides 
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