

Experimental investigation of four volumetric expanders

Olivier Dumont, Rémi Dickes, Vincent Lemort
Thermodynamics Laboratory, University of Liège (Belgium)

Introduction

Experimental facility

Experimental results

Semiempirical modeling

Introduction State of the art

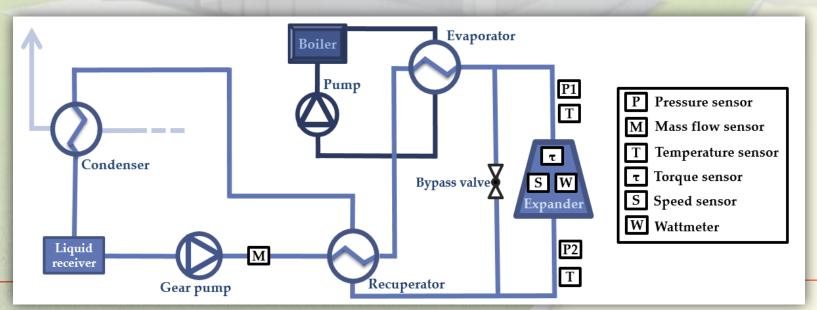
- Strong influence of expander on ORC performance
- (Almost) no experimental comparison of expander in litterature
- No single technology identified as optimal (cost, efficiency, compactness, working conditions..)
 - → 3 main technologies (Scroll, Screw, Piston)

Parameter	Scroll	Piston	Screw	
Displacement [l/s]	0.76-32	[1.25:75]	[25-1100]	
Power [W]	[0.005-14,000] [5]	[0.001-15,000] [5]	[2,000-2e5] [5]	
Max. rotational speed [RPM]	10,000 [6]	3000 (swashplate :12,000) [5]	21,000 [5]	
Built-in volume ratio	[1.5-4.2] [5]	[2-14] [5]	[?-8] [7]	
Maximum pressure [bar]	~40	70 [8]	-	
Max. temperature [°C]	250 [8]	560 [9]	-	
Two-phase flow handling	yes	low	yes	
Isentropic efficiency [%]	87 [10]	70 [11]	84 [12]	

Introduction

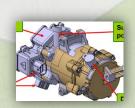
Experimental facility

Experimental results


Semiempirical modeling

Experimental setup Hydraulic scheme

- Test-rig: 3 kWe ORC (SUN2POWER)
- Fluid: R245fa and ~5% oil (but not for piston)
 - Constant speed scroll: Asynchronous generator connected to the grid (cst rotationnal speed)
 - Variable speed scroll: AC/DC convertor + variable resistor
 - Piston: Asynchronous generator with four quadrants variable-frequency drive
 - Screw: Air-cooled Eddy-current brake




Experimental setup Expanders

Parameter	Scroll expanders (constant speed/ variable speed)		Screw expander	Piston expander
Swept volume [cm³]	20.2	12.74	19.96	195
Volume ratio [-]	2.2	2.19	2.5	4.74
Maximum inlet temperature [°C]	140	130	140	250
Maximum inlet pressure [bar]	28	25	16	40
Rotational speed range [RPM]	3,000	[800-8,000]	20,000	[1,000-4,000]
Nominal shaft power [W]	2,277	2,000	2,000	4,000

Introduction

Experimental facility

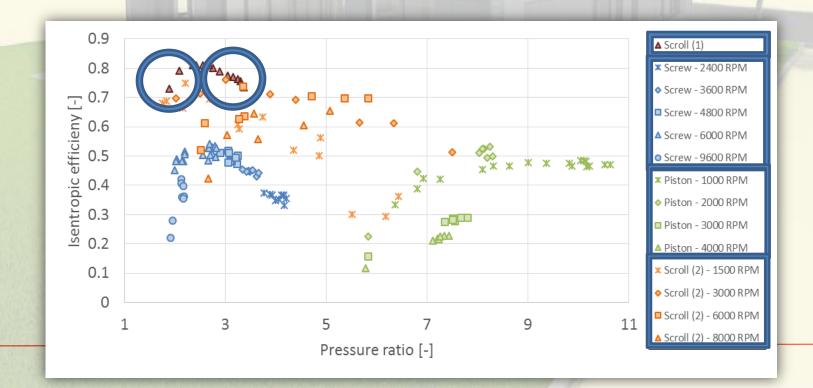
Experimental results

Semiempirical modeling

Experimental results Operating conditions

- Piston → high pressure and temperature allowed
- Piston → higher shaft power
- Screw → Higher rotationnal speed
- Exhaust pressure of the expander limited by pressure drop

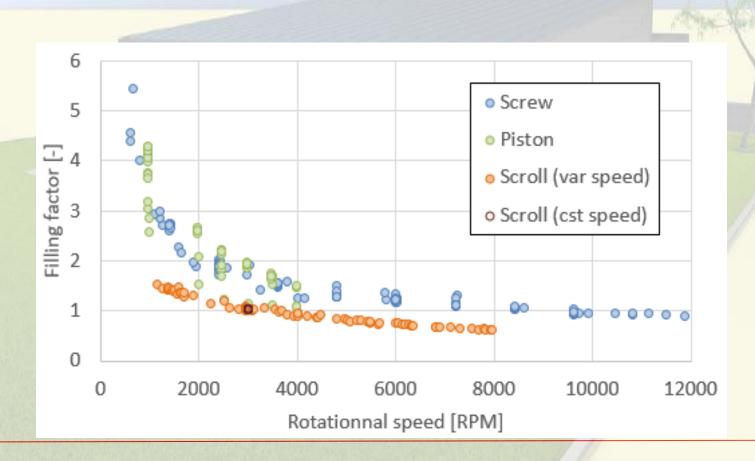
Parameter	Scroll (Copeland/Valeo)		Piston	Screw	
Pressure ratio [-]	1.8-3.37	1.4-7.4	6.2-10.6	1.9-4.17	
Flow [kg.s ⁻¹]	0.77-0.127	0.014-0.07	0.0273-0.104	0.0290-0.137	
Supply temperature [°C]	122-133	122-133	118-153	75-130	
Highest shaft power [W]	1706	1544	2700	1292	
Rotational speed [RPM]	3000	1137-7920	1000-4000	500-12450	



Experimental results Isentropic efficiency

- Same trend for each technology
 - Low pressure ratio → over-expansion losses

- $\eta_s = \frac{\dot{W}_{sh}}{\dot{m}_r (h_{exp,su} h_{exp,ex,s})}$
- High pressure ratio → under-expansion, mechanical losses and pressure drops
- Higher scroll efficiency
- Low efficiencies because of test-rig limitations (pressure drops, mass flow rate...)



Experimental results Filling factor

- Scroll constant speed → ~Constant
- Var speed scroll, screw and piston → FF decrease with speed and increase with Rp

$$FF = \frac{\dot{V}_{meas}}{\dot{V}_{th}}$$

Introduction

Experimental facility

Experimental results

Semiempirical modeling

Semi-empirical model Important note

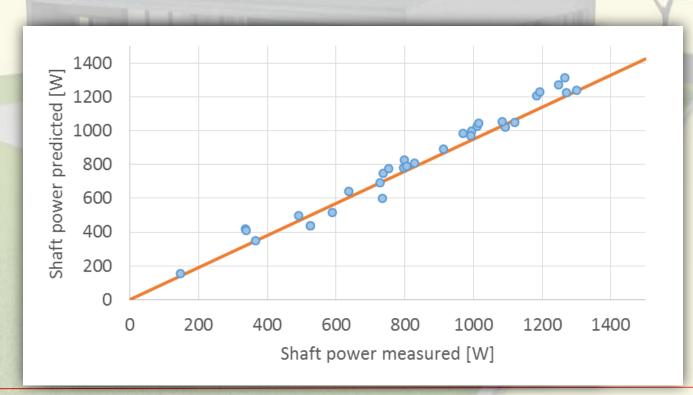
Important note

Perfectly objective comparison between different types of expanders not possible:

- Different level of maturity for expanders
- Not an expander sized for the test-rig (mass flow, pressure and temperature affect the performance of the expanders (not necessarily in the same way for each one).
- Sizing fluids for those expanders are not the one used in this ORC (R245fa).
- Nominal working conditions in terms of pressure and temperature are different for each technology (higher pressure and temperature for the piston for example).

BUT:

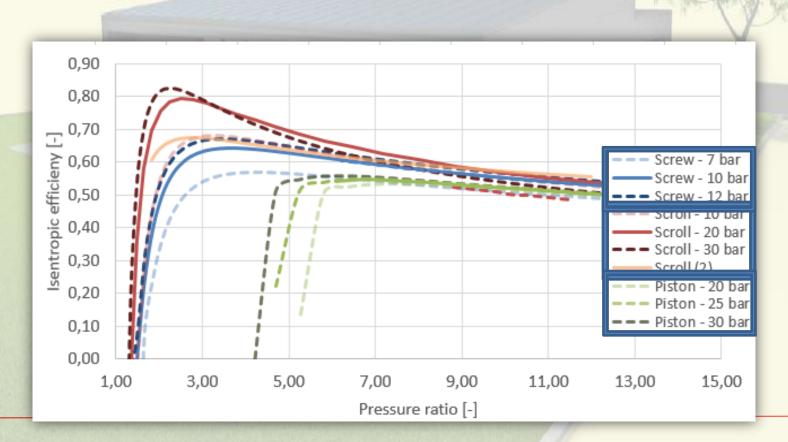
- No such a comparison in litterature
- Same test-rig and fluid
- Semi-empirical models calibrated to predict optimal performance
 - Same formalism for each technology
 - Low number of parameters
 - Fast cpu time
 - Extrapolation capabilities



Semi empirical model Advantages

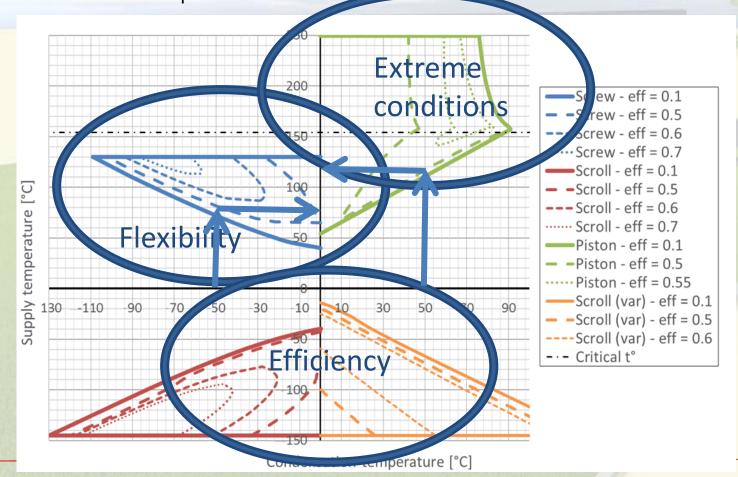
Semi-empirical model

- Low CPU time + robust + extrapolation + general formalism
- Supply DP, mechanical losses, leakage, under(over)-expansion, heat transfers
- Calibration of 7 parameters based on experimentation
- Performance extrapolation with speed optimisation



Semi-empirical model Assumptions

- Larger range of pressure ratio explored
- Larger efficiency for the screw
- Rather constant efficiency for the piston



Semi-empirical model Operating maps

Optimal performance of a machine for a given condensation and evaporation temperature !!!All axis are positive!!!

Introduction

Experimental facility

Experimental results

Semiempirical modeling

Conclusion

	Power	High Pressure and temperature	Wet expansion	compactness	flexibility	Efficiency
Piston	<<	+	+	+	+	+
Screw	>>	-	+++	++	+++	+
Scroll	<<	-	+++	+	++	++

- 1. Screw expander minimum power ~10 kW → wrong!
- 2. Scroll expander are the best because of higher isentropic efficiency → wrong!
- 3. Piston expander not interesting because of low efficiency → wrong!
- 4. Not a single volumetric expander technology is the optimal solution!

Perspectives

- Maturity of technology
- Other technologies: Vane, Wankel, vane
- Economic considerations

Semi-empirical model Important note

Important note

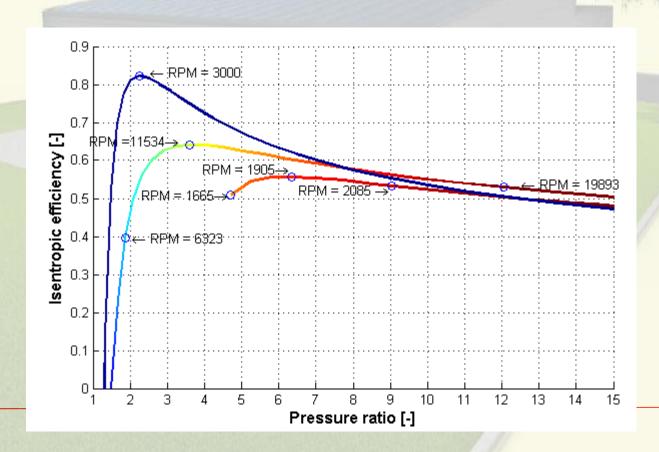
Perfectly objective comparison between different types of expander not possible:

- Different level of maturity for expanders
- Not an expander sized for the test-rig (mass flow, pressure and temperature affect the performance of the expanders (not necessarily in the same way for each one).
- Sizing fluids for those expanders are not the one used in this ORC (R245fa).
- Nominal working conditions in terms of pressure and temperature are different for each technology (higher pressure and temperature for the piston for example).

Thank you!

olivier.dumont@ulg.ac.be

Open source papers → http://orbi.ulg.ac.be



Semi-empirical models

Extrapolation

- Optimal conditions not reached on the test-rig → model to extrapolate
 - Oh = 5 K (Tamb= 25° C)
 - RPM optimised
 - Rp adjusted with P_{exp,ex}

10 bar 30 bars