

Cooling a waste heat recovery system: A study of hybrid cooling for a container ship navigating in the Arctic

Santiago Suárez de la Fuente, Ulrik Larsen, Rachel Pawling, Iván García Kerdan and Alistair Greig

15th September 2017

Contents

- Arctic and Waste Heat Recovery System an opportunity for shipping
- Objective
- Case Study
- Method
- Results
- Conclusions
- References

http://worldmaritimenews.com/archives/96297/danish-russian-cooperation-on-arctic-shipping/

Arctic Ice

Arctic ice is reducing, we know that, but how does it looks?

Past (Summer)

Future (Summer)

Pro

- Faster and cheaper shipping → At least a distance reduction of 22%, less global emissions
- Avoid slow and expensive canals → e.g. Suez and Panama (Average \$180k per pass [1])
- Avoid piracy areas

Con

- Seasonal route \rightarrow Only available in summer/autumn months
- Sensible area to emissions $\rightarrow CO_2$, NO_x, SO_x, soot, etc.
- Threat to wild life \rightarrow noise, spills, etc.

Like it or not is already happening and quite quick!

China Keen on Sending More Ships to Arctic

Route

Crystal to Return to Northwest Passage in 2017

Crystal Serenity, Crystal Cruises' luxury ocean Illustration; Image Co traversing the ...

when compared

March 4, 2016 read more →

Waste Heat Recovery Systems

C - Compressor

Another Consideration

Due to the low ambient temperature in the Arctic, the exhaust gas waste heat is normally used as the heating provider on-board Exhaust gas to

But also, lower temperatures mean better efficiency (Carnot Theorem):

$$\eta = 1 - \frac{T_L}{T_H}$$

Another Consideration

Using ambient air as the WHRS coolant requires large :

- Coolant's mass flow rates, \rightarrow Up to 4 times more compared to SW
- Power consumption, \rightarrow Up to 10 times more compared to SW
- Volumes. \rightarrow Up to 9 times more compared to SW

However, there exist potential in reducing the power consumption by:

- Using the ship's forward movement, and
- Passive ventilation (e.g. Venturi shaped ducts, density change).

Another Consideration

These methods are taken from ventilation practises in building and transportation:

https://www.quora.com/Why-do-nuclear-power-plants-have-such-wide-chimneys

https://en.wikipedia.org/wiki/Postmodern_architecture

https://www.pinterest.com.mx/pin/592856738418521147/

http://www.canoekayak.com/kayakfish/kayakfishnews/hovercraft-runs-over-kayak-fisherman/

http://cyrilhuzeblog.com/2012/04/13/jims-forceflow-cylinder-head-cooler/

Objective

To quantify the annual benefit, in CO₂ emission reduction, when using a hybrid cooling approach for a marine WHRS unit using a container ship's scavenge air waste heat while navigating in the Arctic.

Container ship

Deadweight (t)	Length (m)	Beam (m)	Draught (m)	Design Speed (kn)	
52,450	252	32.2	12.5	23.3][[

- Two-stroke slow speed diesel producing about 38,000 kW
- Electric demand = 1,390 kW_e [6]
- Auxiliary engine specific fuel consumption = 227 g/kWh (LS-MDO)

• 4,100 twenty feet container (TEU) in line = **24.8 km**

- 1 TEU = 6.1 x 2.6 x 2.4 (m) ≈ 39 m³
- Ship can carry what **14,986** 3.5 tonne vans can
- Engine power is equal to:
 - **316** 3.5 tonne vans (assuming 120 kW engine)
 - **157** Hummer H2 (largest engine 242 kW)
 - **53** modern F1 cars (assuming 709 kW engine [7])

https://tugster.wordpress.com/tag/jpo-libra/

The Operating Profile

- Normalised to design speed \rightarrow 23.3 kn (43.2 km/h)
- Taken from Automatic Identification System for a similar ship (2013)

The Operating Profile

Maximum Continuous Rating (%)

Organic Rankine Cycle

Ballstad - Reykjavik

- One Journey = **1,980 km**
- Around 9 single trips per month
- 104 trips per year

Monthly Ambient Air Temperature (°C)

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
-1.7	-1.1	-0.9	1.0	4.0	5.4	7.3	7.3	7.4	4.1	1.4	-0.5

CRUTEM4 data set

- Data available between 1870 to 2013
- 5°N by 5°E
- Uncertainties considered

Monthly Ambient Air Temperature (°C)

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
-1.7	-1.1	-0.9	1.0	4.0	5.4	7.3	7.3	7.4	4.1	1.4	-0.5

Wind Occurrence Probability

- Route discretised in 44 points, 500 observations over a 36 year period
- Given as True Wind Speed (TWS) and True Wind Angle (TWA)
 - Seen from the ship's bow
 - Apparent Wind is needed \rightarrow Dependant on the direction and speed of ship
 - Provided by

University of Strathclyde

Monthly Ambient Air Temperature (°C)

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
-1.7	-1.1	-0.9	1.0	4.0	5.4	7.3	7.3	7.4	4.1	1.4	-0.5

Wind Occurrence Probability

TWA (°N)\TWS (m/s)	0	2	4	6	8	10	12	14
0	0.00%	1.26%	0.21%	0.42%	0.00%	0.00%	0.00%	0.00%
45	1.26%	5.03%	6.92%	2.10%	1.89%	0.00%	0.00%	0.00%
90	0.21%	7.34%	12.58%	7.13%	7.55%	2.10%	0.00%	0.00%
135	0.84%	6.71%	10.69%	5.24%	3.98%	1.89%	0.84%	0.63%
180	0.21%	3.14%	4.61%	2.31%	1.26%	1.05%	0.42%	0.21%

Fans (Forced cooling)

- Efficiency \rightarrow 60% (constant)
- Sized as they are always operating

$\dot{Q}_f ightarrow$ Fan volumetric flow rate

Chimney (Passive cooling)

- **Height** → 19.6 m
- Exit Diameter → 2.0 m
- Entry Box → Dependant on the heat exchanger design
- **Material** → Aluminium
- Works by a change in air density (due to the heat absorbed from the ORC unit

$\dot{Q}_s \rightarrow$ Stack volumetric flow rate

Venturi-shaped roof (Passive cooling)

- Contraction \rightarrow 2
- Flow area \rightarrow 4.0 m²
- **Pressure Coefficient** → -0.75
- Material → Aluminium
- Sits above the superstructure roof
- Works by creating a negative pressure at the chimney exit

 $\dot{Q}_{vr} \rightarrow$ Venturi-shaped roof volumetric flow rate

Hybrid Cooling Equipment Windscoops (Ship fwd movement)

- Number of windscoops per side \rightarrow 2
- Flow area \rightarrow 2.0 m²
- **Opening efficiency** → 0.55
- **Material** → Aluminium
- Rotate along its central axis
- Works by channelling ambient air through the heat exchangers

 $\dot{Q}_{ws} \rightarrow$ Windscoops volumetric flow rate

System

- Two set of equipment are installed to the ship superstructure
 - This increases the chances of using more wind
 - Increases system complexity and cost
- Total air cooling flow is given by:

Method

- Two-step single objective (Annual CO₂ reductions) optimisations:
 - 1. Particle Swarm Optimisation
 - 2. Pattern Search Optimisation
- **12** different variables analysed → Heat exchanger characteristics, TC pressure, WHRS design point, etc.
- Steady-state thermodynamic study
- It does not consider space implications and benefit of waste heat boiler

[9]

Rules of Engagement

For the Windscoop

Optimal heat exchanger for one hybrid system at design speed

- Modules \rightarrow 43
- Module width \rightarrow 6.3 m
- Frontal area \rightarrow 46.3 m²
- Tube rows \rightarrow 5
- Tube length \rightarrow 7.3 m
- Heat rejected \rightarrow 1649 kW
- Air requirement \rightarrow 87.4 m³/s

Due to the low waste heat temperature the ORC unit will not operate below 90% of the design speed \rightarrow 21.1 knots

ORC unit with fan only \rightarrow 543 t of CO₂/year

Monthly ORC power cooling energy consumption

Wind and passive cooling save 4.9 t of CO_2 /year

Represents 0.9% increase in CO₂ savings

But, putting the number into context:

Plumbr. Thinking. Shipping 2012 http://plumbr.eu/blog/whatsyour-overhead/thinking

Fan-only operation \rightarrow 6.2 t fuel/year

Wind and passive cooling \rightarrow **1.6** t fuel/year

Hybrid cooling \rightarrow

4.6 t fuel/year

Represents a reduction of 25.7%

Conclusions

- An ORC unit using the available waste heat from the scavenge air system of a container ship can reduce 543 t of CO_2 /year
- A Hybrid system could reduce further the CO₂ emissions by 0.9%:
 - Largest contribution is by the Windscoop system
 - 25% reduction fan-related fuel consumption
- Further analysis has to be done to consider the friction, leak, ducting losses and how the wind behaves close to the ship superstructure

Thank you Any Questions?

Contact Details

Email: santiago.fuente.11@ucl.ac.uk

Linkedin: Uk.linkedin.com/in/santiagosuarezdlf

References

- 1. <u>http://www.gfdl.noaa.gov/arctic-sea-ice-predictions</u>
- 2. <u>http://www.thetimes.co.uk/tto/environment/article4046987.ece</u>
- 3. <u>http://articles.latimes.com/2012/dec/10/science/la-sci-sn-arctic-shipping-safety-warning--20121210</u>
- 4. MAN Diesel & Turbo, 2012. *Waste Heat Recovery System (WHRS) for Reduction of Fuel Consumption, Emission and EEDI*, Copenhagen.
- 5. Containership-Info. JPO LIBRA [Internet]. 2014 [cited 2014 Sep 22]. p. 1. Available from: http://www.containership-info.com/
- 6. Smith TWP, Jalkanen JP, Anderson BA, Corbett JJ, Faber J, Hanayama S., et al. Third IMO GHG Study 2014. London; 2014.
- 7. Mercedes: "No stopping" our engine gains for 2016. <u>http://www.motorsport.com/f1/news/mercedes-no-stopping-our-engine-gains-for-2016-671911/</u>
- 8. <u>http://www.ockam.com/OldSite/truewind.html</u>
- 9. Steve Boyes/Wild Bird Trust

Area of Opportunity

Marine WHRS are normally cooled by **seawater**, however in the Arctic the **air** temperature tend to be lower.

Monthly Average Difference (Negative = Air is cooler)

Longitude between -52°E and 28°E; latitude between 58°N and 73°N

	Average
Month	Temperature
	Difference
Jan	-8.82
Feb	-8.44
Mar	-7.66
Apr	-5.08
May	-2.25
Jun	-1.68
Jul	-1.63
Aug	-2.62
Sep	-2.89
Oct	-5.01
Nov	-7.04
Dec	-8.56
Average	-5.16

$$\eta = 1 - \frac{T_L}{T_H}$$

Marine WHRS

True Wind

