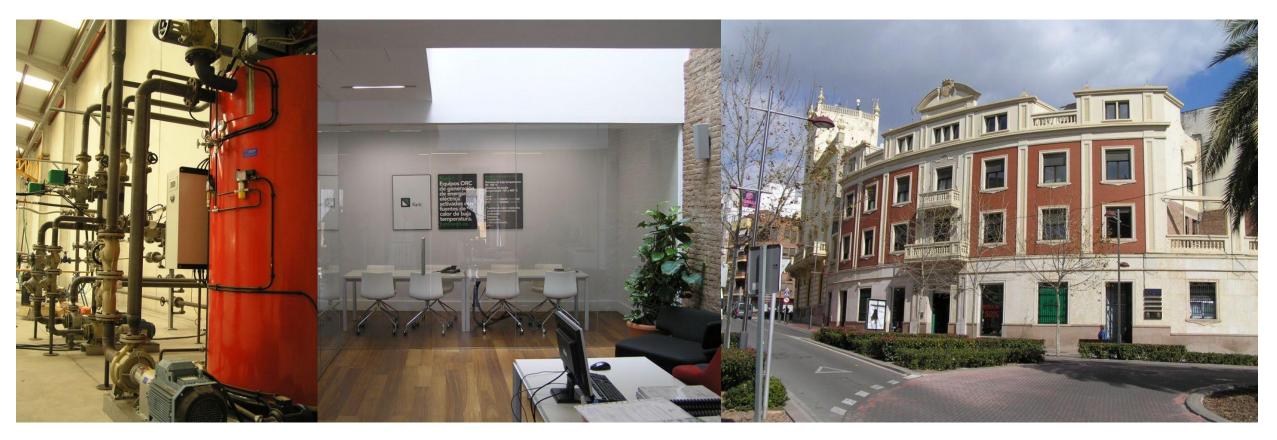
Rank®

Small scale cogeneration equipment for low temperature heat sources

RANK

- Technology based company from Spain
- Since 2007 developing and manufacturing Organic Rankine Cycles
- Low temperature heat sources
- Small scale equipment


Web: <u>www.rankweb.es</u> E-mail: <u>info@rankweb.es</u>

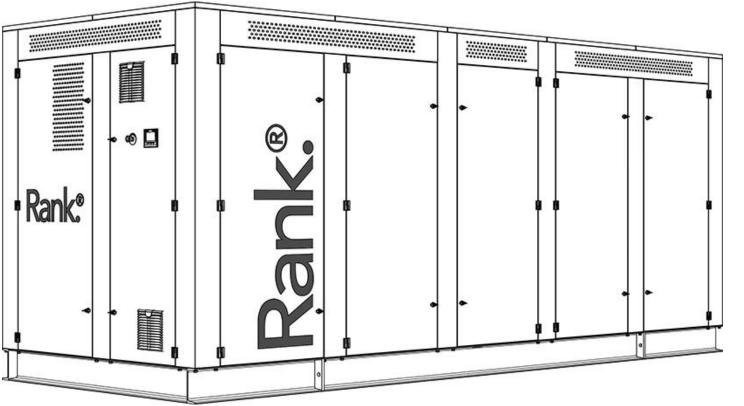
RANK



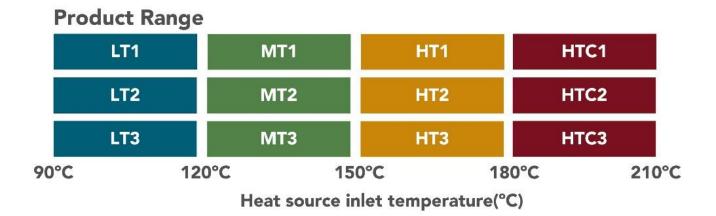
Rank[®]

TECHNOLOGY

- Tested technology, clean and safe
- High efficiency components and design
- Zero-leakage system
- Environmentally friendly working fluid
- Automatic management system
- Local/remote operation
- Main parameters measurement
- Remote assistance
- Easy maintenance



Rank[®]


- CE Low voltage Directive 2006/95/EC
- Machinery Directive 2006/42/EC
- Electromagnetic Compatibility Directive
 2004/108/EC Pressurized Equipment Directive
 2014/68/EC
- ENA ER G59/3
- ASME B31.1 Power Piping Code, Mechanical
- ASME B31.3 Process Piping Code
- Receiver complies with ASME Boiler and Pressure Vessel Code Section VIII
- Built in accordance with UL 508A- Control Panel Wiring
- Sound pressure tested in accordance with EN/ISO 3744:2010

90-210°C INLET TEMPERATURE 100-1500 kWt THERMAL POWER 5-120 kWe ELECTRICAL POWER UP TO 80°C CHP

Product	Model	LT1	LT2	LT3		
	Fluid	Water	Water	Water		
Heat source	Flow rate (m ³ /h)	17,0	36,5	77,5		
neal source	Inlet temperature (°C)	90-120	90-120	90-120		
	Thermal power (kWt)	125-245	265-515	570-1105		
	Fluid	Water	Water	Water		
	Flow rate (m ³ /h)	14,0	29,5	63,0		
Heat sink	Inlet temperature (°C)	20-40	20-40	20-40		
	Outlet temperature (°C)	30-50	30-50	30-50		
	Thermal power (kWt)	95-170	200-360	430-775		
Electrical power	Gross power (kWe)	6-18	12-38	27-82		

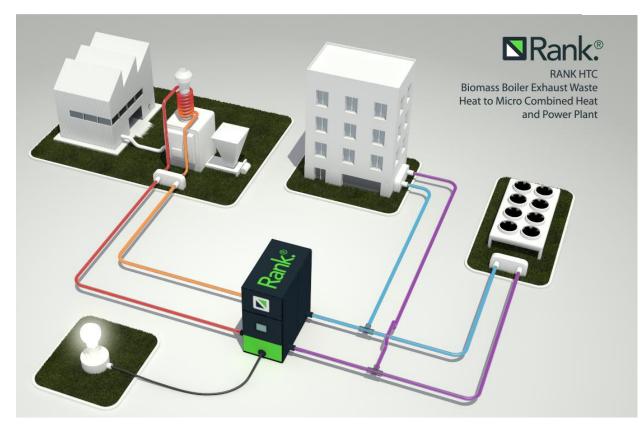
Rank[®]

Rank LT1 performance

								nominal			
Heat source	Inlet temperature (°C) ⁽¹⁾	90.0	90.0	100.0	100.0	100.0	110.0	110.0	110.0	120.0	120.0
	Fluid	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
	Flow rate (m ³ /h)	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0
	Thermal power (kWt)	120-135	115-125	150-165	150-165	140-155	180-200	185-200	185-205	220-245	205-230
Heat sink	Inlet temperature (°C) ⁽²⁾	20.0	30.0	20.0	30.0	40.0	20.0	30.0	40.0	30.0	40.0
	Fluid	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
	Flow rate (m ³ /h)	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0
	Thermal power (kWt)	90-100	85-95	105-120	110-125	105-120	125-140	130-145	135-150	155-170	150-165
Electrical power	Gross power (kWe)	7.5-8.0	5.5-6.0	10.0-11.0	9.0-10.0	7.0-7.5	13.5-14.5	12.5-14.0	11.5-12.5	16.5-18.0	14.0-15.5
	Net power (kWe)	7.0-7.5	5.0-5.5	9.5-10.5	8.5-9.5	6.5-7.0	12.5-14.0	11.5-13.0	10.5-11.5	15.0-17.0	13.0-14.5

(1) The output temperature in the heat source for the nominal operating conditions is 100°C (a temperature difference of 10°C). For all other operating conditions, the outlet temperature should be obtained using the provided thermal power.
 (2) The output temperature in the heat sink for the nominal operating conditions is 40°C (a temperature difference of 10°C). For all other operating conditions, the flow rate should be adjusted in order to obtain the same temperature difference (10°C).

- Several installed and commissioned equipment in Europe
- Three examples of the main applications


Combined Heat and Power (CHP) using **biomass** as renewable heat source

- ADAMS Farm UK
- 2017
- LT2
- 30 kWe net
- Hot water at 45°C

Combined Heat and Power (CHP) using **biomass** as renewable heat source

- ADAMS Farm – UK

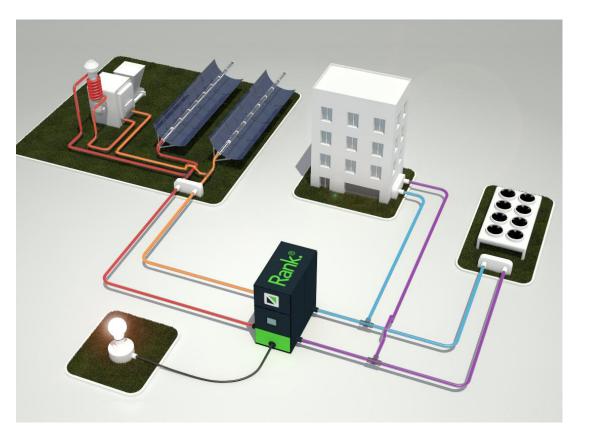
- 2017
- LT2
- 30 kWe net
- Hot water at 45°C

Combined Heat and Power (CHP) using **biomass** as renewable heat source

- ADAMS Farm UK
- 2017
- LT2
- 30 kWe net
- Hot water at 45°C

Combined Cold, Heat and Power (CCHP) using solar/biomass as renewable heat source

- EROSKI Supermarket – SPAIN


MILANO, Italy

- 2016
- HTC1
- 30 kWe net

Rank[®]

- Hot water at 85°C

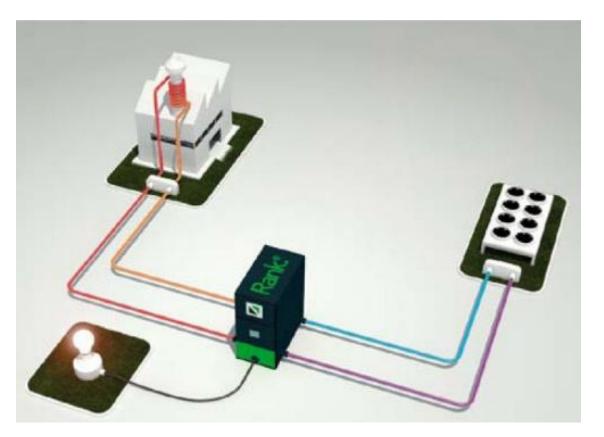
Combined Cold, Heat and Power (CCHP) using solar/biomass as renewable heat source

- EROSKI Supermarket SPAIN
- 2016
- HTC1
- 30 kWe net
- Hot water at 85°C

Combined Cold, Heat and Power (CCHP) using solar/biomass as renewable heat source

- EROSKI Supermarket SPAIN
- 2016
- HTC1
- 30 kWe net
- Hot water at 85°C

Waste Heat Revalorization (WHR)


from industrial processes

- KEROS Ceramics SPAIN
- 2012
- HT1
- 25 kWe net

Waste Heat Revalorization (WHR) from industrial processes

- KEROS Ceramics SPAIN
- 2012
- HT1
- 25 kWe net

Waste Heat Revalorization (WHR) from industrial processes

- KEROS Ceramics SPAIN
- 2012
- HT1
- 25 kWe net

STAND

