

Designing the Optimal Waste Heat Recovery Unit for an ORC Plant

ORC Conference Italy

14th Sept 2017 Presented By Ibrahim El-Habbal

A member of the Muhibbah Engineering group of companies

- Introduction to CiTECH
- Fundamentals of Heat Transfer
- How to Improve Heat Exchanger Size & Cost
- Case Study

Introduction to CiTECH - History

CiTECH

The main driving force to produce a cost effective heat exchanger is having a significant difference in temperature between both the heating medium and hot exhaust gas.

There is a fine balance between trying to create a large log mean temperature difference and having a high process flow rate.

Heat Exchange – Key Model Equations

CiTECH

WHRU – Case Study Enquiry

Cit

ORC Parameters	BASE CASE
Heating Medium	Therminol 66
Inlet/Outlet Process Temperature	160°C / 300°C
Exhaust Gas Temperature Inlet/Outlet	530°C/ 210°C
Process Pressure Drop	1barg
Exhaust Gas Pressure Drop	150mmH2O
Thermal Duty	15.9MW
Process Flow (kg/s)	49.17kg/s

Effects of Increasing Approach Temperature

Citech

Effects of Increasing Pressure Drop Vs Weight CITECH

DUTY (MW)

Effects of Decreasing Inlet Temperature

Citech

WHRU – Optimal ORC Enquiry

CiT≦CH

ORC Parameters	Base Case	Optimal Case
Inlet Process Temperature	160°C	100°C
Outlet Process Temperature	300°C	300°C
Approach Temperature	50°C	110°C
Process Pressure Drop	1barg	2.5barg
Weight	27.472 Tons	16.648 Tons
Thermal Duty	15.9MW	15.9MW
Process Flow	49.17kg/s	36.08kg/s
Cost (Relative Figure)	£X	£0.7X

Thank you and any questions?